Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
In strict symbiotic associations, the genetic structure of the symbiont often mirrors that of its host, with interesting implications for population dynamics and phylogeography. An unresolved case of symbiotic specificity and phylogeographic consequence is the relationship between the marine triclad Bdelloura candida and its host, the American horseshoe crab, Limulus polyphemus. A recent study by Riesgo et al. (2017, Marine Biology, 164, 111) identified a strong genetic break between populations of B. candida in the Gulf of Mexico and the Atlantic Ocean but had minimal sampling around the Florida peninsula such that the exact location of the boundary zone was not specified. To solve this, a comprehensive analysis of 16S rRNA and ITS2 genetic markers was conducted from new collections around the Florida peninsula. A clear and significant genetic break was identified between populations of supposed B. candida between Cumberland Island, Georgia, and Mosquito Lagoon, Florida. This genetic break establishes two cryptic lineages, an Atlantic population as far south as Georgia and a Floridian population inclusive of the entire peninsula and Gulf of Mexico, potentially due to niche partitioning of the unique intertidal habitats of its horseshoe crab hosts in Florida. This result directly refutes the previous hypothesis that a population break exists between the coasts of the Atlantic Ocean and Gulf of Mexico, and instead matches the genetic break of its host. Furthermore, a third cryptic lineage was identified in Key West. Overall, this work demonstrates the challenges in maintaining genetic connections between populations of both B. candida and L. polyphemus across their distributions, and poses meaningful implications for both species in the larger context of marine conservation and biodiversity.
The nonfeeding planktonic larvae of marine invertebrates typically lack larval feeding structures. One puzzling exception to this generalization is the annelid clade Sabellidae, in which nonfeeding larvae possess ciliary bands (specifically, food groove and metatroch) that, to the best of our knowledge, have no function other than in feeding. Nishi and Yamasu (1992b, Bulletin of the College of Sciences, University of the Ryukyus, 54, 107–121) published a scanning electron micrograph showing that nonfeeding larvae of the serpulid annelid Salmacina dysteri also possess food groove and metatrochal cilia. Here I demonstrate that nonfeeding larvae of Salmacina tribranchiata also bear ciliary bands identifiable as food groove and metatroch by position. High-speed video of ciliary beat patterns shows that, together with the prototrochal cilia, these bands function in an opposed band system. The presence of feeding structures in nonfeeding annelid larvae is thus more widely distributed than previously recognized. The presence of feeding structures may make evolutionary transitions to planktotrophy more likely, and may underlie an inferred origin of larval feeding in the common ancestor of one of the two major clades of serpulid annelids, Serpulinae.
The organization of the body cavities is an important morphological trait that can be used for establishing the phylogenetic relationships between different groups of animals. In the present study, the hemocoel and coelomic systems of 10-hr-old juveniles and adults of the hermaphroditic oikopleurid Oikopleura gracilis were examined using light and transmission electron microscopy. The trunk hemocoel in 10-hr-old juveniles was represented by small clefts containing layers of extracellular matrix of adjacent tissues or interstices with migrating primordial germ syncytium. The wide hemocoel in the tail contained extracellular strands, subdividing the hemocoel into hemal sinuses. In adults, a large hemocoel appeared in the trunk and tail, and also contained extracellular strands. The hermaphroditic gonad was surrounded by its own lining, separating it from the hemocoel. The gamete-filled cavity in the ovary and testis appeared only at late-stage gonadogenesis, when the pre-spawning reduction of syncytium occurred in the gonads. The true coelom in 10-hr-old juveniles and adults was represented by the pericardium. The lining of the pericardium consisted of myoepithelial and peritoneal cells. In the myoepithelial cells of 10-hr-old juveniles, myofibrils had been formed. The myoepithelial cells of adults had several parallel rows of completely differentiated myofibrils. The substantial reduction of the coelomic and circulatory systems in O. gracilis evidently results from the extreme shortening of ontogeny in appendicularians. Development in O. gracilis from early juvenile to adult involves the following steps, which also suggest how the tunicate heart may have evolved: a single-layered coelomic sac gives rise to a grooved pericardium with an open hemal sinus (simple heart). In ascidians, this simple heart in turn gives rise to a closed tubular, double-layered heart–pericardial complex, with a separate pericardial cavity and a closed heart, whose wall is formed by specialized myocardium.
Larvae of many phyllodocidan annelids are planktotrophic, but the feeding mechanisms of larvae in this diverse clade are poorly known. Many larvae belonging to one large clade of phyllodocidans, Aphroditiformia, bear a bundle of long cilia attached to the left side of the prototroch, the oral brush, which they use in feeding. In 1936, D.P. Wilson observed that trochophore larvae of Nephtys hombergi, a member of the phyllodocidan family Nephtyidae, bore a strikingly similar bundle of long cilia on the left side of the body. Since Wilson's observation, numerous descriptions of nephtyid larvae have been published, but none remark on the presence of an oral brush. Here I show that metatrochophore I and II larvae of Micronephtys cornuta bear an oral brush, but that it is lost in the transition to the nectochaete stage, during which the larval mouth and foregut are also being remodeled to function in benthic feeding by juveniles. That an oral brush is clearly present in at least some larval stages of two genera suggests that oral brushes may be widespread in the feeding larvae of nephtyids, but have simply been overlooked for more than 80 years. Additional work is needed to make inferences on the evolutionary history of the oral brush in phyllodocidan annelids, and to distinguish among several hypotheses on the function of this peculiar group of cilia in larval feeding.
Surveys of larval diversity consistently increase biodiversity estimates when applied to poorly documented groups of marine invertebrates such as phoronids and hemichordates. However, it remains to be seen how helpful this approach is for detecting unsampled species in well-studied groups. Echinoids represent a large, robust, well-studied macrofauna, with low diversity and low incidence of cryptic species, making them an ideal test case for the efficacy of larval barcoding to discover diversity in such groups. We developed a reference dataset of DNA barcodes for the shallow-water adult echinoids from both coasts of Panama and compared them to DNA sequences obtained from larvae collected primarily on the Caribbean coast of Panama. We sequenced mitochondrial cytochrome c oxidase subunit I (COI) for 43 species of adult sea urchins to expand the number and coverage of sequences available in GenBank. Sequences were successfully obtained for COI and 16S ribosomal DNA from 272 larvae and assigned to 17 operational taxonomic units (OTUs): 4 from the Pacific coast of Panama, where larvae were not sampled as intensively, and 13 from the Caribbean coast. Of these 17 OTUs, 13 were identified from comparisons with our adult sequences and belonged to species well documented in these regions. Another larva was identified from comparisons with unpublished sequences in the Barcode of Life Database (BOLD) as belonging to Pseudoboletia, a genus scarcely known in the Caribbean and previously unreported in Panama. Three OTUs remained unidentified. Based on larval morphology, at least two of these OTUs appeared to be spatangoids, which are difficult to collect and whose presence often goes undetected in standard surveys of benthic diversity. Despite its ability to capture unanticipated diversity, larval sampling failed to collect some species that are locally common along the Caribbean coast of Panama, such as Leodia sexiesperforata, Diadema antillarum, and Clypeaster rosaceus.
The reproductive biology of tropical marine cotylean polyclads is presently poorly known. Reproductive aspects of 16 polyclad species from the family Pseudocerotidae in the genera Acanthozoon, Nymphozoon, Phrikoceros, Pseudobiceros, Pseudoceros, Thysanozoon, and Tytthosoceros from Singapore were documented for the first time. Penis fencing was observed to be just a mating ritual and not necessary for insemination, not always aggressive, and could also result in eventual reciprocal insemination. Results showed that all species underwent similar embryonic developmental stages and hatched as Müller's larvae. Only Pseudoceros concinnus and Pseudoceros laingensis, with mean developmental times of >20 days and mean brood sizes of <1,000 eggs, displayed long-term parental care. Polyclads producing larger brood sizes had shorter developmental times and only covered their egg masses for about one day. Phrikoceros baibaiye and Pseudobiceros spp. produced egg capsules with pointed opercula, whereas all other species possessed smooth, rounded opercula. All genera hatched with brownish-orange larvae, except for Pseudoceros spp., which hatched with reddish-purple larvae regardless of the initial embryo color (either grayish-yellow or reddish-purple). These could potentially complement current taxonomic characters in distinguishing polyclad genera and species.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere