The malathion susceptibility, acetylcholinesterase (AChE) sensitivity, and the activity of selected detoxification enzymes including general esterase (EST) and glutathione S-transferase (GST) were compared among field populations of the grasshopper Oxya chinensis (Thunberg) (Orthoptera: Acrididae) collected from nine regions of China. Bioassay results showed that these populations had various levels of the susceptibility to malathion with the LD50 values ranging from 1.4- to 22.6-fold compared with the most susceptible population (Xiangyuan or XY). The Jinnan (JN) population seemed to be malathion resistant (22.6-fold), whereas other populations exhibited 1.4- to 6.8-fold reduced malathion susceptibility with a rank order of Changan > Baodi > Hanzhong > Xinxiang > Yinchuan > Beidagang > Jinyuan. It seemed that the observed malathion resistance in the JN population was attributed to at least two resistance mechanisms, including increased EST activity (2.2-fold) and reduced sensitivity of AChE to inhibition by malaoxon (4.6-fold) compared with those of the XY population. In contrast, differential malathion susceptibilities in other populations may be due to increased activities of certain detoxification enzymes (e.g., EST and GST), reduced sensitivity of AChE, or other factors, which were not consistent across the populations examined. Such differential susceptibilities to malathion were likely due to different population habitats (e.g., grasslands, rice [Oryza sativa L.]-producing regions) with very different insecticide application histories and pest management practices.
How to translate text using browser tools
1 August 2007
Comparisons of Malathion Susceptibility, Target Sensitivity, and Detoxification Enzyme Activity in Nine Field Populations of Oxya chinensis (Orthoptera: Acrididae)
Haihua Wu,
Meiling Yang,
Yaping Guo,
Zhigeng Xie,
Enbo Ma
ACCESS THE FULL ARTICLE
It is not available for individual sale.
This article is only available to subscribers.
It is not available for individual sale.
It is not available for individual sale.
Journal of Economic Entomology
Vol. 100 • No. 4
August 2007
Vol. 100 • No. 4
August 2007
acetylcholinesterase
general esterase
glutathione S-transferase
malathion
Oxya chinensis