Temporal changes in indoxacarb and chlorantraniliprole were determined in four midwestern soils by simulating commercial field applications of termiticides. Indoxacarb (0.0625 and 0.125%) and chlorantraniliprole (0.05 and 0.10%) were applied to each soil type in a rotating cement mixer to ensure uniform distribution of active ingredient (AI). Temporal and spatial changes in termiticide concentrations were determined by sampling soil cores subdivided at different depths (0–20, 20–40, and 40–61 cm) at various intervals up to 705 d after application. Percentage loss of indoxacarb was initially greater (0–180 d) than losses after 180 d. The lowest indoxacarb extractable concentrations were detected in soils closest to the surface. Chlorantraniliprole losses with time from all soils were slower than indoxacarb, with no differences observed with soil type or depth. Bioefficacy was evaluated in laboratory glass tube bioassays that monitored the distance of termite penetration into treated soils and resulting eastern subterranean termite, Reticulitermes flavipes (Kollar) (Isoptera: Rhinotermitidae), worker mortality. Bioassay data revealed that R. flavipes termites were unable to completely penetrate 50 mm of indoxacarb- and chlorantraniliprole-treated soils at 0 d after treatment; however, termites were not deterred from foraging in these soils indicating no repellency to these termiticides. Termites completely penetrated (50 mm) soils treated with indoxacarb (0.0625%) by 360 d and complete penetration occurred in all soils treated with indoxacarb (0.0625 and 0.125%) by 705 d. Termites were unable to completely penetrate chlorantraniliprole-treated soils at 705 d. Mortality of termite workers was high in all chlorantraniliprole-treated soils at all sampling intervals. These data confirm that vertical differences in termiticide persistence occur in various soils.