Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Corn rootworm larval feeding on corn roots can significantly reduce grain yield by interfering with photosynthetic rates, limiting the uptake of water and nutrients, and by increasing the plant’s susceptibility to lodging. Of the techniques developed to measure the efficacy of corn rootworm larval control tactics, root damage ratings have generally been adopted as the standard because sampling roots is relatively efficient. Historically, the primary scales used for scoring root injury from corn rootworm larval feeding have been the 1–6 and 1–9 scales. A critical deficiency of those scales, however, is that each increase in a root-rating score does not reflect a linear increase in the actual amount of injury to the root system. This results in injury scores that are expressed qualitatively. We developed the node-injury scale to more accurately quantify corn rootworm larval injury based on the proportion of nodal roots that contain feeding injury. With the node-injury scale, the relationship between the numerical scale and the amount of root injury is linear and intuitive. In this article, we describe the node-injury scale, discuss sampling issues to consider when using the scale, and suggest the minimum node-injury score that causes economic damage under varying degrees of environmental stress.
In fall, Myzus persicae (Sulzer) (Homoptera: Aphididae) may exhibit population resurgence in winter oilseed rape in France. This resurgence may arise from pyrethroid treatments against Coleoptera (Psylliodes chrysocephala L.) that either kill parasitoids present during treatment or prevent recolonization by off-crop parasitoids. We studied the impact of Diaeretiella rapae (M’Intosh) (Hymenoptera: Braconidae) on populations of M. persicae when parasitoids were introduced on deltamethrin-treated plants at increasing intervals after treatment. Parasitoids were introduced 1, 2, 7, or 14 d posttreatment on individually caged plants infested with established populations of M. persicae. Aphids were counted 7, 14 and 21 d after parasitoid introduction. First, we observed that both the pesticide and the parasitoid reduced aphid population growth and that their effects were additive. Second, there was no mortality of parasitoids exposed to treated leaves in a device with a refuge area, and only 20% of mortality without the refuge area. Furthermore, deltamethrin residues had no effect on the reproduction of D. rapae females. Compared with the known toxicity of deltamethrin to D. rapae on glass, this low mortality may have been due to both the high liposolubility of deltamethrin (leading to a rapid diffusion of residues in the oilseed rape leaf cuticle) and to the existence of a refuge area. This work suggests that D. rapae could limit populations of M. persicae in the fall, even after pyrethroid treatment, because the presence of deltamethrin residues had little impact on the parasitoid.
We model the release of insects carrying an allele at multiple loci that shifts sex ratios in favor of males. We model two approaches to sex ratio alteration. In the first (denoted SD), meiotic segregation (or sperm fertility) is distorted in favor of gametes carrying the male-determining genetic element (e.g., Y-chromosome). It is assumed that any male carrying at least one copy of the SD allele produces only genotypically male offspring. In the second approach (denoted PM), the inserted allele alters sex ratio by causing genetically female individuals to become phenotypically male. It is assumed that any insect carrying at least one copy of the PM allele is phenotypically male. Both approaches reduce future population growth by reducing the number of phenotypic females. The models allow variation in the number of loci used in the release, the size of the release, and the negative fitness effect caused by insertion of each sex ratio altering allele. We show that such releases may be at least 2 orders of magnitude more effective than sterile male releases (SIT) in terms of numbers of surviving insects. For example, a single SD release with two released insects for every wild insect and a 5% fitness cost per inserted allele could reduce the target population to 1/1000th of the no-release population size, whereas a similar-sized SIT release would only reduce the population to one-fifth of its original size. We also compare these two sex ratio alteration approaches to a female-killing (FK) system and the sterile male technique when there are repeated releases over a number of generations. In these comparisons, the SD approach is the most efficient with equivalent pest suppression achieved by release of ≈1 SD, 1.5–20 PM, 2–70 FK, and 16–3,000 SIT insects, depending on conditions. We also calculate the optimal number of SD and PM allele insertions to be used under various conditions, assuming that there is an additional genetic load incurred for each allelic insertion.
Effects of fenitrothion and deltamethrin, the most commonly used insecticides in Iran for controlling Eurygaster integriceps Puton (Heteroptera: Scutelleridae), in wheat and barley were assessed on adults and preimaginal stages of egg parasitoid Trissolcus grandis Thompson (Hymenoptera: Scelionidae). Adult parasitoids exposed to field recommended concentrations of the insecticides suffered 100% mortality within 24 h. LC50 values of fenitrothion and deltamethrin for T. grandis were 8.1 and 3.9 μg (AI)/ml, respectively. Both insecticides and the preimaginal stage of exposure had a significant influence on the level of adult emergence from host eggs treated with field recommended rates. Fenitrothion and deltamethrin reduced the emergence rates by 18 and 34.4%, respectively, compared with the control. However, neither insecticide significantly affected the longevity or reproductive capacity of emerged females, or the sex ratio of their progeny. This study revealed that application of these insecticides should be avoided in early season to conserve natural or released populations of T. grandis. Both insecticides seemed to be detrimental to the parasitoid and need to be applied cautiously through season.
Cellulose, a main structural constituent of plants, is the major nutritional component for wood-feeding termites. Enzymatic hydrolysis of cellulose to glucose occurs by the action of cellulases, a mixture of the three major classes of enzymes including endo-1,4-β-glucanases, exo-1,4-β-glucanases, and β-glucosidase. Lower termites, such as the Formosan subterranean termite, Coptotermes formosanus Shiraki, require cellulolytic protozoa to efficiently digest cellulose for survival. Inhibitors developed against any of these cellulase system enzymes would be a potential termite treatment avenue. Our effort was to develop a screening system to determine whether termites could be controlled by administration of cellulase system inhibitors. Some reported compounds such as gluconolactone, conduritol B epoxide, and 1-deoxynojirimycin are potential β-glucosidase inhibitors, but they have only been tested in vitro. We describe an in vivo method to test the inhibitory ability of the designated chemicals to act on β-1,4-glucosidases, one member of the cellulase system that is the key step that releases glucose for use as an energy and carbon source for termites. Inhibition in releasing glucose from cellooligosaccharides might be sufficient to starve termites. Fluorescein di-β-d-glucopyranoside was used as the artificial enzyme substrate and the fluorescent intensity of the reaction product (fluorescein) quantified with an automated fluorescence plate reader. Several known in vitro β-1,4-glucosidase inhibitors were tested in vivo, and their inhibitory potential was determined. Endogenous and protozoan cellulase activities are both assumed to play a role.
The risk associated with spread of Asian longhorned beetle, Anoplophora glabripennis (Motschulsky), from infested areas in New York City to the wide array of landfills across the eastern United States contracted by the city since 1997 was unknown, but of great concern. Landfills, some as far as South Carolina, Virginia, and Ohio, occupied forest types and climates at high risk of Asian longhorned beetle establishment. The city proposed a separate waste wood collection known as the “311 System;” this was estimated to cost federal and state agencies $6.1 to $9.1 million per year, including the cost of processing and disposal of the wood. Pathway analysis was used to quantify the probability that Asian longhorned beetle present in wood waste collected at curbside would survive transport, compaction, and burial to form a mated pair. The study found that in seven alternate management scenarios, risks with most pathways are very low, especially given existing mitigations. Mitigations included chemical control, removal of infested trees, and burial of wood waste in managed landfills that involved multiple-layering, compaction, and capping of dumped waste with a 15-cm soil cover at the end of each day. Although the risk of business-as-usual collection and disposal practices was virtually nil, any changes of policy or practice such as illegal dumping or disposal at a single landfill increased the risk many thousandfold. By rigorously maintaining and monitoring existing mitigations, it was estimated that taxpayers would save $75 to $122 million dollars over the next decade.
The Mediterranean fruit fly, Ceratitis capitata (Wiedemann) (Diptera: Tephritidae), is targeted for control using the sterile insect technique (SIT). For this technique to succeed, released males must be able to compete with wild males for copulations. Male success is mediated by survival in the field often in adverse conditions. Manipulation of the postteneral environment experienced by sterile males before release has been shown to affect male sexual success and survival. The objectives of this study were to determine how various diets, combined with exposure to volatiles containing α-copaene, affect the ability of male Mediterranean fruit flies (from a wild and two unisexual strains) to withstand starvation. Accordingly, we maintained males on one of eight regimes combing a diet of either sugar, sugar and protein, a protein pulse or apricot, with or without the aroma of the sexual stimulant α-copaene. The apricot diet was associated with the lowest ability to resist starvation. The sugar-only diet was associated with the highest ability to resist starvation by sterile males. Exposure to α-copaene, in combination with the apricot diet, had a significant negative effect on the ability of males (from all strains) to resist starvation relative to other regimes examined. We conclude that the holding regimes that elicit the best sexual performance from males paradoxically also hasten their demise, probably by initiating an irreversible metabolic cascade. The search for the optimal prerelease regime continues.
We confirmed that commercial three- or four-component Spodoptera frugiperda (J.E. Smith) pheromone lures had a high nontarget capture rate for Leucania phragmatidicola Guenée, which compromised monitoring efforts in the northeastern United States. We compiled taxonomic features to distinguish L. phragmatidicola from S. frugiperda, and we compared five new lures. S. frugiperda catch specificity was improved by removing (Z)-11-hexadecen-1-ol acetate (Z11–16:Ac), which attracted L. phragmatidicola. Four lures tracked late-season S. frugiperda immigration, but two of these lures also tracked a bivoltine L. phragmatidicola flight with a second generation coincident with S. frugiperda immigration, and one lure attracted the first, but not the second, generation of L. phragmatidicola. In both low- and high-moth flight conditions, two-component lures had low L. phragmatidicola captures (0.5–1.4%), and although lures with more pheromonal components captured more S. frugiperda, they also had a high percentage of capture of L. phragmatidicola (38–48%). We conclude that although two-component lures captured fewer S. frugiperda, their similar temporal pattern, along with the lower level of L. phragmatidicola, makes them useful for development for monitoring programs in the northeastern United States.
Cultivars of glandular-haired alfalfa, Medicago sativa L., such as ‘54H69’, are currently available and marketed as being resistant to potato leafhopper, Empoasca fabae (Harris). Between 2000 and 2002, studies were conducted to compare the effects of ‘54H69’ and a standard, nonglandular-haired alfalfa cultivar, ‘Choice’, on alfalfa weevil, Hypera postica (Gyllenhal), and potato leafhopper populations at Campbell and Montgomery counties, Virginia. ‘54H69’ had no effect on alfalfa weevil populations. At each location, densities of alfalfa weevil in ‘54H69’ and ‘Choice’ were similar, but pest pressure was higher at Campbell Co. than at Montgomery Co. and always exceeded the economic threshold before insecticide was applied. Densities of potato leafhopper also did not differ between ‘54H69’ and ‘Choice’ in any year at the two locations. Insecticide treatment effectively reduced potato leafhopper densities in the two cultivars, although populations were below the economic threshold at both locations when the insecticides were applied. Overall, postinsecticide treatment comparisons showed that the densities of alfalfa weevil and potato leafhoppers were similar or higher in untreated ‘54H69’ compared with insecticide-treated ‘Choice’. In addition, there were no differences in seasonal dry yields between ‘54H69’ and ‘Choice’ in any year at either location. Our results indicate that the glandular-haired alfalfa ‘54H69’ does not provide acceptable resistance to potato leafhopper and also does not offer a yield advantage to growers in Virginia.
Cotton plants were infested with brown stink bug, Euschistus servus (Say), to define cotton boll age classes (based on heat unit accumulation beyond anthesis) that are most frequently injured during each of the initial 5 wk of flowering. Bolls from each week were grouped into discrete age classes and evaluated for the presence of stink bug injury. Brown stink bug injured significantly more bolls of age class B (≈165–336 heat units), age class C (≈330–504 heat units), and age class D (≈495–672 heat units) during the initial 3 wk in both years and in week 5 in 2002 compared with other boll ages. Generally, the frequency of injured bolls was lowest in age class A (≤168 heat units) during these periods. The preference by brown stink bug for boll age classes B, C, and D within a week was similar when ages were combined across all 5 wk. Based on these data, bolls that have accumulated 165.2 through 672 heat units beyond anthesis (≈7–27-d-old) are more frequently injured by brown stink bug when a range of boll ages are available. The boll ages in our studies corresponded to a boll diameter of 1.161–3.586 cm with a mid-range of 2.375 cm. A general protocol for initiating treatments against stink bugs is to sample bolls for evidence of injury as an indicator of presence of infestations in cotton. Sampling bolls within a defined range, which is most likely to be injured, should improve the precision of this method in detecting economic stink bug infestations in cotton.
Laboratory experiments were conducted to evaluate the behavior of bollworm, Helicoverpa zea (Boddie), and tobacco budworm, Heliothis virescens (F.), larvae on meridic diet with different concentrations of the Cry1Ac and Cry2Ab proteins from Bacillus thuringiensis subsp. kurstaki Berliner. The proteins used in these experiments are the ones in commercially available Bollgard and Bollgard II cotton. Both bollworms and tobacco budworms selectively fed on nontreated diet compared with diet treated with Cry1Ac. In addition, bollworms exhibited a concentration response with Cry1Ac. In general, bollworms selected diet with low concentrations of Cry1Ac compared with diet with higher concentrations of Cry1Ac. For Cry2Ab, the avoidance was not as prominent as that observed for Cry1Ac. Based on results from no-choice assays, the Cry1Ac and Cry2Ab concentrations used in choice assays represented a wide range of biological activity on both species. The lower concentrations provided low levels of mortality, whereas the higher concentrations provided high levels of mortality. Also, the developmental times of larvae were longer at higher concentrations of both proteins. These data provide important information about the behavioral response of key cotton pests to the B. thuringiensis proteins found in commercially available transgenic cotton. This information will be important to develop accurate scouting and management procedures for Bollgard and Bollgard II cotton.
The effects of planting date and application rate of imidacloprid for control of Schizaphis graminum Rondani, Rhopalosiphum padi L. (Homoptera: Aphididae), and barley yellow dwarf virus (BYDV) in hard red winter wheat were studied. The first experiment was conducted from 1997 to 1999 at two locations and consisted of three planting dates and four rates of imidacloprid-treated seed. The second experiment was conducted from 2001 to 2002 in Stillwater, OK, and consisted of two varieties of hard red winter wheat seed and four rates of imidacloprid. Aphid densities, occurrence of BYDV, yield components, and final grain yield were measured, and yield differences were used to estimate the economic return obtained from using imidacloprid. In the first study, aphid populations responded to insecticide rate in the early and middle plantings, but the response was reduced in the late planting. Yields increased as insecticide rate increased but did not always result in a positive economic return. In the second study, imidacloprid seed treatments reduced aphid numbers and BYD occurrence, protected yield, and resulted in a positive economic return. The presence of aphids and BYDV lowered yield by reducing fertile head density, total kernel weight, and test weight. Whereas the application of imidacloprid seed treatments often provided positive yield protection, it did not did not consistently provide a positive economic return. A positive economic return was consistently obtained if the cereal aphid was carrying and transmitting BYDV and was more likely to occur if wheat was treated with a low rate if imidacloprid and planted in a “dual purpose” planting date window.
Field studies in Pennsylvania and Maryland were conducted during 2000, 2001, and 2002 to test the applicability of published yield loss relationships developed in central Pennsylvania for European corn borer, Ostrinia nubilalis (Hübner), management in warmer, longer season corn, Zea mays L., grain production regions of the northeastern United States. Both isoline hybrids and non-Bt lead hybrids were compared against Bacillus thuringiensis (Bt) hybrids to measure effects of the pest on yield. The European corn borer economic analysis model was used to make site-specific predictions of loss per European corn borer larva for comparison with measured yield loss per larva. Although the model did not predict loss per larva at a field level, it did predict loss at a regional level. The model predicted an overall percentage of yield loss per larva of 2.69 ± 0.12% over the region, which was similar to the measured yield loss per larva of 2.66 ± 0.59% for isoline hybrids and 3.08 ± 0.51% for lead hybrids. The model, on average, provided a good prediction of percentage of yield loss per larva within the climatic zones of 1100–1700 degree-days (DD) (base threshold 12.5°C). Our results suggest that the yield loss relationship developed in Central Pennsylvania, when matched to the timing of third instar second generation European corn borer stalk tunneling is adequate for major corn grain production zones of the northeast United States.
Studies were conducted to examine the effect of potassium (K) on soybean aphid, Aphis glycines Matsumura, population growth. A laboratory feeding assay examined the effect of K-deficient foliage on life table parameters of soybean aphids, and field experiments were designed to determine the effect of three soil K treatment levels on aphid populations and their impact on soybean yields. The feeding assay found that life table parameters differed between aphids feeding on the K-deficient and nondeficient soybean leaves. Soybean aphids in the K-deficient treatment exhibited significantly greater intrinsic rate of increase (rm), finite rate of increase (λ), and net reproductive rate (Ro) relative to aphids feeding on nondeficient leaves. No significant difference was observed in mean generation time (T) between the two treatments. However, the field experiment repeated over 2 yr showed no effect of K on soybean aphid populations. Soybean aphid populations were high in unsprayed plots and feeding resulted in significant yield losses in 2002 at all three K treatment levels: when averaged across 2001 and 2002, unsprayed treatments yielded 22, 18, and 19.5% less than the sprayed plots in the low, medium, and high K treatments, respectively. No significant interaction was observed between aphid abundance and K level on soybean yields in either year. This study therefore suggests that although aphids can perform better on K-deficient plants, aphid abundance in the field may be dependent on additional factors, such as dispersal, that may affect final densities within plots.
The most common management options for corn rootworms are rotating corn with nonhost crops, planting genetically engineered corn resistant to corn rootworms (e.g., Bacillus thuringiensis [Bt] corn), and treating with a soil insecticide at planting time. Because these control tactics are preventive, the decision to apply controls has been made without any knowledge of rootworm density and spatial distribution. This study was conducted to predict the spatial distribution of adult emergence and to generate and test management zones for insecticides and Bt corn. To identify variables that correlated best with adult emergence the following year, plant height, plant stage, soil moisture, altitude, and corn rootworm adults were sampled spatially and temporally. Correlation and regression analyses showed that the best prediction for the adult emergence the following year was adult counts in the ear zone at peak population densities during the present year. Based on the prediction, geostatistics and the geographic information system were used to generate and test prescription maps with management zones for insecticides and Bt corn. Map-overlaying analysis showed that management zones for insecticides based on the economic injury level and Bt corn with 20% refuge had potential failure of 3–15% and 0–12% of field areas, respectively. This study demonstrated the spatial prediction of adult emergence the following year and generation of management zones, which has the potential of preventative, site-specific management of corn rootworms.
The influence of tray drench (TD) treatments, with and without foliar applications of the plant activator acibenzolar-S-methyl (Actigard), was examined in replicated field plots in 2000–2002. TD treatments of Actigard, imidacloprid (Admire), and these two products combined had little effect on seasonal mean thrips populations; however, thrips densities were lower in the Admire-treated plots at 4 and 5 wk after transplanting. Actigard and Admire TD treatments significantly reduced the seasonal incidence of tomato spotted wilt virus (TSWV) symptomatic plants in 2 yr in the study. The combination of both products was better in reducing TSWV than Actigard alone. Three early-season foliar sprays of Actigard had no effect on thrips population densities, but they did reduce TSWV incidence. The tobacco thrips, Frankliniella fusca (Hinds), comprised 92–95% of the thrips complex each year. Other thrips collected on tobacco foliage at very low densities included Haplothrips spp., Chirothrips spp., Limothrips cerealium (Haliday), other Frankliniella spp. and other unidentified species. Using nonstructural TSWV protein enzyme-linked immunosorbent assay, 1.5–2.3% of the F. fusca tested positive for nonstructural TSWV protein. Cured yields were higher in the TD treatments and the Actigard foliar treatments in the years with high TSWV in the untreated plots. The TD treatments and foliar Actigard had little impact on plant height or grade index; however, TD treatments with Admire had low tobacco aphid, Myzus nicotianae Blackman, populations through 10 wk after transplanting. The early-season Actigard and Admire treatment options are management decisions that can effectively reduce the risks of TSWV incidence in flue-cured tobacco.
The reluctance of Israeli vine growers to adopt the mating disruption technique to control the moth Lobesia botrana Den. & Schiff. has been attributed to the high cost of this method compared with that of traditional insecticide control. In this study, we tested the possibility of reducing the cost, first by testing different pheromone formulations (and thus open the market for competition) and second by reducing the pheromone concentration used in vineyards. Comparisons were made between two pheromone formulations—Shin-Etsu (Tokyo, Japan) at 165 g/ha and Concep (Sutera, Bend, OR) at 150 g/ha—and between two concentrations of Shin-Etsu, 165 and 110 g/ha. Pheromone dispensers were placed at the onset of the second moth generation. Comparison of the numbers of clusters infested with eggs and larvae of L. botrana showed no significant differences in the performance, either between the two formulations, or between the two tested concentrations. The results suggest that 1) the two formulations are equally effective, and 2) a low pheromone concentration is sufficient to maintain good control of small populations of L. botrana. However, when the population is high, pest control efficacy is not improved by increasing the pheromone concentration. Therefore, in the interest of reducing the relatively high cost of mating disruption, we emphasize that increasing the pheromone concentration does not provide improved control of high populations of L. botrana. The cost of mating disruption can be diminished by reducing the applied pheromone concentration and by using the least expensive pheromone formulations
Pyramid traps coated with “industrial safety yellow” exterior latex gloss enamel paint and baited with Euschistus spp. aggregation pheromone, methyl (2E,4Z)-decadienoate captured more stink bugs than all other baited and unbaited trap types in both apple and peach orchards in 2002 and 2003. Commercial sources of dispensers of methyl (2E,4Z)-decadienoate deployed in association with pyramid traps had a significant impact on trap captures. Captures in pyramid traps were four-fold greater when baited with lures from IPM Technologies, Inc. (Portland, OR) than with lures from Suterra (Bend, OR). Variation in yellow pyramid trap color (“industrial safety yellow” and “standard coroplast yellow”) and material (plywood, plastic, and masonite) did not affect trap captures. Brown stink bug was the predominant species captured (58%), followed by dusky stink bug, Euschistus tristigmus (Say) (20%); green stink bug, Acrosternum hilare (Say) (14%); and other stink bugs (Brochymena spp. and unidentified nymphs) (8%). Captures in baited pyramid traps were significantly correlated with tree beating samples in both managed and unmanaged apple orchards and with sweep netting samples in the unmanaged apple orchard. However, problems associated with trapping mechanisms of pyramid trap jar tops and jar traps likely resulted in reduced captures in baited traps. Improved trapping mechanisms must be established to develop an effective monitoring tool for stink bugs in mid-Atlantic orchards.
The effects of soil moisture and temperature on the reproduction of twospotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae), were examined in laboratory and field tests in strawberries, Fragaria × ananassa Duchesne, in Florida. Different soil moisture levels (low, moderate, and high) were compared to determine how soil moisture affects the reproduction and development of twospotted spider mite. In addition to soil moisture, different irrigation techniques (drip versus drip/overhead) were compared to determine their effects on twospotted spider mite reproduction as well as the incidence of angular leaf spot, Xanthomonas fragaria Kennedy & King disease. Similar studies were conducted to determine how different temperatures (18, 27, and 35°C) affect the reproduction and development of twospotted spider mites. In the laboratory, low soil moisture as well as temperatures >27°C promoted twospotted spider mite development. A similar trend was observed in a field study with low soil moisture promoting twospotted spider mite reproduction during the early season (11 November–8 December). Irrespective of moisture levels, a significantly higher incidence of X. fragaria was recorded in treatments with drip/overhead irrigation systems compared with drip irrigation. Implications for management of soil moisture levels are discussed with respect to the abundance of twospotted spider mite and X. fragaria in strawberries.
Seven kairomone formulations (Trécé, Inc., Salinas, CA) were evaluated for their effectiveness as attractants for luring three species of cucumber beetles into Pherocon CRW traps (Trécé, Inc.) in cucurbit and sweetpotato fields. The spotted cucumber beetle, Diabrotica undecimpunctata howardi Barber; the banded cucumber beetle, Diabrotica balteata LeConte; and the striped cucumber beetle, Acalymma vittatum (F.), were captured in this study. TRE8276 (TIC mixture: 500 mg of 1,2,4-trimethoxybenzene, 500 mg of indole, and 500 mg of trans-cinnamaldeyde) and TRE8336 (500 mg of 1,2,4-trimethoxybenzene, 500 mg of trans-cinnamaldeyde, 500 mg of 4-methoxyphenethanol) were the most effective lures for spotted and striped cucumber beetles. None of the kairomone lures was very effective for attracting banded cucumber beetles. Three population peaks of spotted cucumber beetles were observed in cucurbit and sweetpotato fields at the U.S. Vegetable Laboratory (Charleston, SC). The efficacy of TRE8276 declined rapidly after 2 wk in the field. An improved design of the Pherocon CRW trap, with a yellow bottom and more-tapered top section, was more effective for capturing cucumber beetles than the original trap design made entirely of clear plastic. Banded cucumber beetles were not captured in sweetpotato fields at inland locations in North Carolina or South Carolina.
Geographic variation in the chromosomal location of the male sex determining factor (M) was studied in four house fly, Musca domestica L., populations from the eastern United States. We found a strong clinal trend (29° 41′ latitude in Florida to 44° 2′ in Maine) in which the percentage of standard XYM males increased with increasing latitude. In Florida, 100% of the males possessed the M factor on the third autosome (IIIM). North Carolina had 20% IIIM males and 2.35% with both YM and IIIM. Fewer IIIM males were found in New York (4.35%). Populations from Maine contained 100% XYM males. In two of three standard laboratory-susceptible strains, all males carried M on an autosome (“autosomal males” or AM): CS (IIIM) and SRS (VM). Insecticide bioassays of four field-collected strains led us to conclude that resistance is not correlated with sex determination over a broad range of insecticides. For example, high levels of resistance to permethrin (86–99% survival at a diagnostic concentration) were found in all four field-collected strains. The five other insecticides evaluated showed varying levels of resistance among field strains. We conclude that a cline is present in house fly populations from the eastern United States with 100% IIIM males in the south and entirely YM males in the north and that insecticide resistance is not a key factor influencing the evolution or linkage of M.
Adult brown, Euschistus servus (Say); green, Acrosternum hilare (Say); and southern green, Nezara viridula (L.), stink bugs were collected from soybean, Glycine max (L.) Merr., in fall 2001 and 2002 near Stoneville, MS, and Eudora, AR. A glass-vial bioassay was used to determine LC50 values for the three species of stink bugs for the pyrethroids bifenthrin, cypermethrin, cyfluthrin, λ-cyhalothrin, and permethrin, and the organophosphates acephate, dicrotophos, malathion, and methyl parathion. Results confirmed findings of other researchers that the brown stink bug was less susceptible to pyrethroid and organophosphate insecticides than were green and southern green stink bugs. The susceptibility of all three stink bug species to the insecticides tested was very similar at both test locations. The study established baseline insecticide mortality data from two locations in the mid-South for three stink bug species that are pests of soybean and cotton, Gossypium spp. Data from the tests are valuable for future use in studies on resistance and in resistance monitoring programs.
A competitive enzyme-linked immunosorbent assay (ELISA) technique was evaluated for quantifying titers of imidacloprid in xylem fluid extracted from Vitis vinifera L. grapevines that were treated with systemic applications of the neonicotinoid insecticide Admire. Evidence of matrix effects, factors that compromise the precision and accuracy of the ELISA, was present in assays with undiluted xylem fluid. These effects could be eliminated by dilution of extracts in water, resulting in a lower sensitivity of the assay of 4 μg liter−1. In a field trial conducted in a commercial vineyard, there was an excellent correlation between Admire application rates and xylem fluid concentrations of imidacloprid. At an Admire application rate of 1.17 liter ha−1 (16 fl oz per acre), uptake of imidacloprid into vines was rapid. Imidacloprid was consistently detected in the xylem for up to 3 mo after application at concentrations known to be effective at managing populations of the sharpshooter Homalodisca coagulata Say, an important vector of Xylella fastidiosa Wells in California vineyards. The ELISA is a sensitive technique that can be used to study the behavior of systemic insecticides within crop systems and their impact on pest populations.
Susceptibilities to the neonicotinyl insecticide imidacloprid were determined for clones of apple aphid, Aphis pomi De Geer, and spirea aphid, Aphis spiraecola Patch, collected from conventional and organic apple orchards and from crab apple and wild apple in Washington state and British Columbia over a period of 6 yr. For aphids collected during 1996–1998, adults were dipped in test solutions by using the Food and Agriculture Organization protocol, and third instars and adults were reared on treated apple leaf disks. During the final 3 yr of study, bioassays involved only third instars on treated leaf material. Tests showed that A. spiraecola was significantly more tolerant to imidacloprid compared with A. pomi. Depending on the bioassay method and aphid developmental stage, average LC50 values for A. spiraecola were 4.4–5.7 times higher than those for A. pomi established under the same test conditions. Clones of both species from Washington were marginally more tolerant to imidacloprid than clones from British Columbia, but the differences were generally not significant. Average measures of susceptibility for clones from organic orchards or unsprayed trees also did not differ from those for clones from conventional orchards, and there was no evidence for increasing LC50 values over the 6 yr of study. Differences in susceptibility to insecticides between these two anatomically similar species should be considered during the testing of new products for use on apple.
Seasonal levels of Bacillus thuringiensis (Bt) insecticidal protein and its control efficacy against Helicoverpa armigera (Hübner) in Bt transgenic cotton GK19 (carrying a Cry1Ac/Cry1Ab fused gene) and BG1560 (carrying a Cry1Ac gene) were investigated in Tianmen County, Hubei Province, located in the Yangtze River valley of China, in 2001 and 2002. The results showed that the toxin content in Bt cotton changed significantly over time, and that the structure, growth stage, and variety were significant sources of variability. Generally, insecticidal protein levels were high during the early stages of cotton growth; they declined in mid-season, and rebounded in late season. On most dates sampled, the toxin contents in leaf, square, petal, and stamens (including nonovule pistil tissue) were much higher than those in ovule and boll. Compared with BG1560, the expression of Cry1Ac/Cry1Ab protein in GK19 was more variable during the whole growth period of cotton. The field evaluation on larval population dynamics of H. armigera in Bt and conventional cotton showed that the larval densities in BG1560 and GK19 fields decreased, respectively, 92.04 and 81.85% in 2001, and 96.84 and 91.80% in 2002.
Interactions of the parasitoid Lysiphlebus testaceipes (Cresson) and the greenbug, Schizaphis graminum (Rondani), on greenbug-resistant ‘Cargill 607E’ (antibiosis), ‘Cargill 797’ (primarily tolerance), and -susceptible ‘Golden Harvest 510B’ sorghum, Sorghum bicolor (L.) Moench, were tested using three levels of biotype I greenbug infestation. The parasitoid infestation rate was 0.5 female and 1.0 male L. testaceipes per plant. For all three greenbug infestation levels, the parasitoid brought the greenbug under control (i.e., prevented the greenbugs from killing the plants) on both resistant hybrids, but it did not prevent heavy leaf damage at the higher greenbug infestation rates. At the low greenbug infestation rate (50 greenbugs per resistant plant when parasitoids were introduced), greenbugs damaged 5 and 18% of the total leaf area on ‘Cargill 797’ and ‘Cargill 607E’, respectively, before greenbugs were eliminated. Leaf damage was higher for the intermediate infestation study (120 greenbugs per plant), 21% and 30% leaf area were damaged on the resistant sorghum hybrids ‘Cargill 797’ and ‘Cargill 607E’, respectively. At the high greenbug infestation rate (300 greenbugs per plant), heavy damage occurred: 61% on ‘Cargill 607E’ and 75% on ‘Cargill 797’. The parasitoids did not control greenbugs on the susceptible sorghum hybrid ‘Golden Harvest 510B’. L. testaceipes provided comparable control on both greenbug-resistant hybrids. This study supports previous studies indicating that L. testaceipes is effective in controlling greenbugs on sorghum with antibiosis resistance to greenbugs. Furthermore, new information is provided indicating that L. testaceipes is also effective in controlling greenbugs on a greenbug-tolerant hybrid.
Because of variations in insect populations and staggered flowering of chickpea, Cicer arietinum L., genotypes, it is difficult to compare the genotypic performance across seasons and locations. We standardized a cage technique to screen chickpeas for resistance to Helicoverpa armigera (Hübner). Leaf feeding by the larvae was significantly lower on ICC 506 than on ICCC 37 when the seedlings were infested with 20 neonates per five plants at 15 d after seedling emergence or 10 neonates per three plants at the flowering stage. Maximum differences in pod damage were observed when the plants were infested with six third-instar larvae per three plants in the greenhouse, and with eight larvae per plant under field conditions. Larval weights were significantly lower on ICC 506 than on ICCC 37 across growth stages and infestation levels. At the podding stage, percentage of reduction in grain yield was significantly greater on ICCC 37 and Annigeri than on ICCV 2 and ICC 506. The no-choice test can be used to screen segregating breeding material and mapping populations for resistance to H. armigera. It also provides useful information on antibiosis mechanism of resistance to H. armigera.
Polymerase chain reaction (PCR) primers were designed and tested for identification of immature parasitoids in small grain cereal aphids and for estimation of parasitism rates. PCR technique was evaluated for 1) greenhouse-reared greenbugs, Schizaphis graminum (Rondani), parasitized by Lysiphlebus testaceipes Cresson and 2) aphids collected from winter wheat fields in Caddo County, Oklahoma. For greenhouse samples, parasitism frequencies for greenbugs examined by PCR at 0, 24, and 48 h after removal of L. testaceipes parasitoids were compared with parasitism frequencies as determined by greenbug dissection. PCR was unable to detect parasitism in greenbugs at 0 and 24 h postparasitism, but it was able to detect parasitoids 48 h after parasitoid removal at frequencies that were not significantly different from dissected samples. Field-collected samples were analyzed by rearing 25 aphids from each sample and by comparing parasitoid frequencies of mummies developed and PCR performed on another 50 aphids. Aphid samples included corn leaf aphids, Rhopalosiphum maidis (Fitch); bird cherry-oat aphids, Rhopalosiphum padi (L.); English grain aphids, Sitobion avenae (F.); and greenbugs. Mummies were isolated until adult emergence, whereupon each parasitoid was identified to species (L. testaceipes was the only parasitoid species found). Parasitism detection frequencies for PCR also were not statistically different from parasitism frequencies of reared aphids. These results indicate that PCR is a useful tool for providing accurate estimates of parasitism rates and especially for identification of immature parasitoids to species.
The potato tuberworm, Phthorimaea operculella (Zeller), is a major pest of potatoes in fields and traditional storage. A common method of nonrefrigerated storage is to pile potatoes in straw-covered heaps in the field. Tubers may be stored up to 3–4 mo in this manner, until the next harvest. We studied the dynamics of potato tuber moth infestation associated with such field storage in a 12-wk experiment in Israel. We set up six potato heaps, and sampled them for potato tuber moth at different locations at weekly intervals. Potato tuber moth infestation was significantly higher at the perimeter of the heaps than at their center, but it did not differ between bottom, mid-height, and top of the heaps. The proportion of potato tuber moth-infested potato tubers increased from 10 to 65% over the course of the experiment, and the mean number of potato tuber moth larvae per tuber increased from 0.25 to 2.50. Potato tuberworm populations increased sharply after 3, 6, and 9 wk of study, possibly corresponding to successive generations that developed within the heaps. This interpretation is supported by calculations of potato tuberworm generation length based on temperature data. Catches in pheromone traps that were placed near the heaps were not correlated (spatially and temporally) with potato tuberworm densities within heaps, hinting that migration among heaps did not considerably affect within-heap population dynamics. Potato tuberworm levels were not correlated with ambient temperatures, perhaps because of the warm, humid, and constant microclimate within the heaps. We discuss the significance of our findings for control efforts of the potato tuberworm.
Lesser mealworm, Alphitobius diaperinus (Panzer), emergence from North Carolina field soils was evaluated in a controlled experiment simulating land application of turkey litter and again in field studies. Adult lesser mealworms were buried in central North Carolina Cecil red clay at depths of 0, 8, 15, 23, and 30 cm and the beetles emerging from the soil counted 1, 3, 7, 10, 13, 17, 21, 24, and 28 d after burial. Beetles emerged from all depths and differences among depths were not significant. Beetles survived at least 28 d buried in the soil at depths ≤30 cm. In seasonal field studies, lesser mealworm emergence from clay soil with poultry litter incorporated by disk, mulch and plow was compared with emergence from plots with no incorporation. Incorporation significantly reduced beetle emergence when poultry litter containing large numbers of beetles was applied to clay field soils during the summer (F = 3.45; df = 3, 143; P = 0.018). Although mechanical incorporation of poultry litter reduced beetle emergence relative to the control, greatest reductions were seen in plowed treatments. Beetle activity was reduced after land application of litter during colder months. Generally, lesser mealworm emergence decreased with time and few beetles emerged from the soil 28 d after litter was applied. Similarly, mechanical incorporation of poultry litter into sandy soils reduced beetle emergence (F = 4.06; df = 3, 143; P < 0.008). In sandy soils typical of eastern North Carolina, disk and plow treatments significantly reduced beetle emergence compared with control.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere