Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Little is known about what factors influence the climbing ability of bed bugs, Cimex lectularius L. (Hemiptera: Cimicidae), in relation to the various surfaces they encounter. We examined how sex, time since last fed, and what surfaces the bed bugs were in contact with affected their climbing performance. The effects of sex and time since fed were tested by counting the number of bed bugs able to climb a 45° slope. The pulling force was recorded using an analytical balance technique that captured the sequential vertical pulling force output of bed bugs attached to various surfaces. Recently fed female bed bugs were found to have the most difficulty in climbing smooth surfaces in comparison with males. This difference can be explained by the larger weight gained from bloodmeals by female bed bugs. A variety of vertical pulling forces were observed on surfaces ranging from sandpaper to talc powder-covered glass. For surfaces not treated with talc powder, bed bugs generated the least amount of vertical pulling force from synthetically created 0.6-µm plastron surfaces. This vast range in the ability of bed bugs to grip onto various surfaces may have implications on limiting bed bugs dispersal and hitchhiking behaviors.
We understand little about photopreference and the molecular mechanisms governing vision-dependent behavior in vector mosquitoes. Investigations of the influence of photopreference on adult mosquito behaviors such as endophagy and exophagy and endophily and exophily will enhance our ability to develop and deploy vector-targeted interventions and monitoring techniques. Our laboratory-based analyses have revealed that crepuscular period photopreference differs between An. gambiae and An. stephensi. We employed qRT-PCR to assess crepuscular transcriptional expression patterns of long wavelength-, short wavelength-, and ultraviolet wavelength-sensing opsins (i.e., rhodopsin-class G-protein coupled receptors) in An. gambiae and in An. stephensi. Transcript levels do not exhibit consistent differences between species across diurnal cycles, indicating that differences in transcript abundances within this gene set are not correlated with these behavioral differences. Using developmentally staged and gender-specific RNAseq data sets in An. gambiae, we show that long wavelength-sensing opsins are expressed in two different patterns (one set expressed during larval stages, and one set expressed during adult stages), while short wavelength- and ultraviolet wavelength-sensing opsins exhibit increased expression during adult stages. Genomic organization of An. gambiae opsins suggests paralogous gene expansion of long wavelength-sensing opsins in comparison with An. stephensi. We speculate that this difference in gene number may contribute to variation between these species in photopreference behavior (e.g., visual sensitivity).
Sugar availability varies greatly in nature, and determining how this affects male mosquito fitness is essential for understanding population dynamics. We allowed male Aedes albopictus (Skuse) carbohydrate access for increasing intervals of time immediately after eclosion and we evaluated their fitness by comparing mortality, mating success, and sperm transfer. We compared individual male Ae. albopictus, which were offered water or 20% sucrose solution for 24, 48, or 72 h. As predicted, there were significant increases in fitness for each additional day of sucrose access. Following sugar exposure, we allowed males daily access to three virgin females. We assessed mating success through observation of spermatozoa in the female spermathecae. When individuals of the same age were compared, males with sugar access exhibited significantly greater mating success than water-treated males in all treatments. The total number of spermathecae filled by males with sugar access in the 48- and 72-h treatments was also significantly greater on some days; these were 3–5 d posteclosion in the 48-h treatment and 5–6 d posteclosion in the 72-h treatment. We conclude that extended sugar access at eclosion is important for maximizing fitness in male Ae. albopictus and should be applicable to sterile male release efforts, especially when laboratory-reared males suffered from other disadvantages. We recommend retaining adult males for 3 d posteclosion prior to release to improve their mating success in male release initiatives.
An examination of ectoparasite loads in two populations of wild diademed sifakas, Propithecus diadema Bennett, yielded seven species—four mite species, a louse, a hippoboscid fly, and a leech. Prevalence of the tick Haemaphysalis lemuris Hoogstraal, the mites Liponyssella madagascariensis (Hirst) and Lemuralges propithecus Bochkov et al., and the louse Trichophilopterus babakotophilus Stobbe was quite high, at least 20%. H. lemuris was the most common ectoparasite in one population, while completely absent in a second one. When present, the most common attachment site for H. lemuris males was in the nares of their hosts.
Minimum postmortem interval estimations of a corpse using blow fly larvae in medicolegal investigations require correct identification and the application of appropriate developmental data of the identified fly species. Species identification of forensically relevant blow flies could be very difficult and time consuming when specimens are damaged or in the event of morphologically indistinguishable immature stages, which are most common at crime scenes. In response to this, an alternative, accurate determination of species may depend on sequencing and molecular techniques for identification. Chrysomyinae specimens (n = 158) belonging to three forensically important species [Chrysomya albiceps (Wiedemann), Chrysomya megacephala (F.), and Chrysomya marginalis (Wiedemann)] (Diptera: Calliphoridae) were collected from four locations in Egypt (Giza, Dayrout, Minya, and North Sinai) and sequenced across the mitochondrial cytochrome oxidase subunit I (COI) gene. Phylogenetic analyses using neighbor—joining, maximum likelihood and maximum parsimony methods resulted in the same topological structure and confirmed DNA based identification of all specimens. Interspecific divergence between pairs of species was 5.3% (C. marginalis—C. megacephala), 7% (C. albiceps—C. megacephala), and 8% (C. albiceps—C. marginalis). These divergences are sufficient to confirm the utility of cytochrome oxidase subunit I gene in the molecular identification of these flies in Egypt. Importantly, the maximum intraspecific divergence among individuals within a species was <1% and the least nucleotide divergence between species used for phylogenetic analysis was 3.6%. This study highlights the need for thorough and diverse sampling to capture all of the possible genetic diversity if DNA barcoding is to be used for molecular identification.
Over the past decades, the Asian tiger mosquito (Aedes albopictus (Skuse, 1895)) has emerged in many countries, and it has colonized new environments, including urban areas. The species is a nuisance and a potential vector of several human pathogens, and a better understanding of the habitat preferences of the species is needed for help in successful prevention and control. So far, the habitat preference in urban environments has not been studied in Southern European cities. In this paper, spatial statistical models were used to evaluate the relationship between egg abundances and land cover types on the campus of Sapienza University in Rome, which is taken as an example of a European urban habitat. Predictor variables included land cover types, classified in detail on a high resolution image, as well as solar radiation and month of capture. The models account for repeated measures in the same trap and are adjusted for meteorological circumstances. Vegetation and solar radiation were found to be positively related to the number of eggs. More specifically, trees were positively related to the number of eggs and the relationship with grass was negative. These findings are consistent with the species' known preference for shaded areas. The unexpected positive relationship with solar radiation is amply discussed in the paper. This study represents a first step toward a better understanding of the spatial distribution of Ae. albopictus in urban environments.
Since 2009, The Netherlands Food and Consumer Product Safety Authority carries out surveys focusing on, amongst others, the presence of invasive mosquito species (IMS). Special attention is given to exotic container-breeding Aedes species Aedes aegypti (L.), Aedes albopictus (Skuse), Aedes atropalpus (Coquillett), and Aedes japonicus japonicus (Theobald). This study describes the implementation of real-time PCR tests described by Hill et al. (2008) for the identification of Ae. aegypti and Ae. albopictus, and the development of two novel real-time PCR tests for the identification of Ae. atropalpus and Ae. j. japonicus. Initial test showed that optimization of elements of the Ae. aegypti and Ae. albopictus tests was needed. Method validation tests were performed to determine if the implemented and newly developed tests are fit for routine diagnostics. Performance criteria of analytical sensitivity, analytical specificity, selectivity, repeatability, and reproducibility were determined. In addition, experiments were performed to determine the influence of environmental conditions on the usability of DNA extracted from mosquito specimens trapped in BG-Sentinel traps. The real-time PCR tests were demonstrated to be sensitive, specific, repeatable, reproducible, and are less prone to false negative results compared to partial cytochrome c oxidase I gene sequencing owing to the DNA fragmentation caused by environmental influences.
Saliva of blood-sucking arthropods contains a complex cocktail of pharmacologically active compounds that assists feeding by counteracting their hosts' hemostatic and inflammatory reactions. Panstrongylus megistus (Burmeister) is an important vector of Chagas disease in South America, but despite its importance there is only one salivary protein sequence publicly deposited in GenBank. In the present work, we used Illumina technology to disclose and publicly deposit 3,703 coding sequences obtained from the assembly of >70 million reads. These sequences should assist proteomic experiments aimed at identifying pharmacologically active proteins and immunological markers of vector exposure. A supplemental file of the transcriptome and deducted protein sequences can be obtained from http://exon.niaid.nih.gov/transcriptome/P_megistus/Pmeg-web.xlsx.
Mirella F. C. Santos, José D. Andrade Filho, Carlos E. S. Fernandes, Nathália L. F. Mateus, Gabriel U. Eguchi, Wedson D. Fernandes, Reginaldo P. Brazil, Everton F. Oliveira, Alessandra G. Oliveira
Owing to the existence of cryptic species that are difficult to distinguish morphologically, the search for new taxonomic characters and methods for identifying and classifying sand flies continues. Lutzomyia longipalpis (Lutz & Neiva, 1912) and Lutzomyia cruzi (Mangabeira, 1938) (Diptera: Psychodidae) are two such species that occur in sympatry in some regions of Mato Grosso do Sul State (MS). Twenty females and twenty males from each of the five populations of Lu. longipalpis and one population of Lu. cruzi from MS were examined. An outlying population of Lu. longipalpis from Estrela de Alagoas, State of Alagoas, was used to compare the degree of divergence among the groups in MS. Specimens were cleared, mounted on slides, identified, and measured using LAS-Leica. The principal component analysis of morphometric characters showed a high degree of variation among females, while males varied to a lower degree. The populations of Alagoas and Miranda demonstrated the greatest variation. The first region, Alagoas, is geographically distant from the others and occurs under distinctly different ecological conditions, which likely accounts for the variation. Further studies should be made to elucidate the factors that contribute to the differences found between the populations of MS.
A scanning electron microscopy study of the third larval instar of Cordylobia rodhaini Gedoelst (Diptera: Calliphoridae), causing obligatory furuncular myiasis, is presented here for the first time. The larvae were collected from a patient exposed to them in the tropical rainforest of Kibale National Park (Uganda). Distinctive features are described in sequence from the anterior region to the posterior region, highlighting the morphological features of antennae, maxillary palps, structures related to mouth opening, sensory structures, thoracic and abdominal spines, and anterior and posterior spiracles. The results are compared with those of other Calyptrata flies, mainly from the family Calliphoridae and, when possible, with Cordylobia anthropophaga Blanchard (Diptera: Calliphoridae), the only other species of genus Cordylobia investigated by scanning electron microscopy.
The presence of Aedes albopictus (Skuse) in the Torres Strait of northern Australia increases the potential for colonization and establishment on the mainland. However, there is a possibility that native species that occupy the same habitats may influence the population performance of Ae. albopictus, potentially affecting the establishment of this species in Australia. Cohabitation experiments were performed with the endemic Aedes notoscriptus (Skuse), which has been found occupying the same larval habitats as Ae. albopictus in the Torres Strait and is the most widespread container-inhabiting Aedes species in Australia. The influence of environmental factors and cohabitation between the two species was examined using different climates, food resource levels, food resource types, and species densities. Survivorship proportions and a population performance index (λ') were calculated and compared. The consequences of increased Ae. notoscriptus densities were reduced survivorship and λ' for Ae. albopictus. Despite this, the mean λ' of Ae. albopictus and Ae. notoscriptus was consistently ≥ 1.06, indicating both species could increase under all conditions, potentially due to increasing conspecific densities negatively affecting Ae. notoscriptus. The outcomes from this study suggest that the preexisting presence of Ae. notoscriptus may not prevent the establishment of Ae. albopictus in Australia.
The aim of the present study was to explore the response behavior of males and females of different families of Calyptratae (Diptera) to two different baits (rotten liver and feces) as separate attractants. We describe the sex bias toward these baits for species of Calliphoridae, Muscidae, and Sarcophagidae and compare the general patterns of this sex bias according to the family or trophic guild. In total, 15 species of Sarcophagidae, 10 species of Muscidae, and 9 species of Calliphoridae were analyzed. A female-biased pattern was observed for most calliphorids and for all muscids, whereas a male-biased pattern was more frequent among sarcophagids. The female captures on each kind of bait were assessed as a potential indicator of potential breeding substrates of the species. Three different trophic guilds and their pattern of sex bias were compared. The results obtained allow hypothesizing on the biological traits of saprophagous species, especially on their potential breeding substrates, and assessing proper sampling methods.
Donald A. Yee, Alisa A. Abuzeineh, Nnaemeka F. Ezeakacha, Stephanie S. Schelble, William C. Glasgow, Stephen D. Flanagan, Jeffrey J. Skiff, Ashton Reeves, Kevin Kuehn
Container systems, including discarded vehicle tires, which support populations of mosquitoes, have been of interest for understanding the variables that produce biting adults that serve as both nuisances and as public health threats. We sampled tires in six sites at three times in 2012 across the state of Mississippi to understand the biotic and abiotic variables responsible for explaining patterns of larvae of common species, species richness, and total abundance of mosquitoes. From 498 tires sampled, we collected >58,000 immatures representing 16 species, with the most common species including Aedes albopictus (Skuse), Culex quinquefasciatus (L.), Orthopodomyia signifera (Coquillett), Aedes triseriatus (Say), Toxorhynchites rutilus septentrionalis (Coquillett), and Culex territans (Walker) accounting for ∼97% of all larvae. We also documented 32 new county records for resident species and recent arrivals in the state, including Aedes japonicus japonicus (Theobald) and Culex coronator (Dyar & Knab). Cluster analysis, which was used to associate sites and time periods based on similar mosquito composition, did reveal patterns across the state; however, there also were more general patterns between species and genera and environmental factors. Broadly, Aedes was often associated with factors related to detritus, whereas Culex was frequently associated with habitat variables (e.g., tire size and water volume) and microorganisms. Some Culex did lack factors connecting variation in early and late instars, suggesting differences between environmental determinants of oviposition and survival. General patterns between the tire environment and mosquito larvae do appear to exist, especially at the generic level, and point to inherent differences between genera that may aid in predicting vector locations and populations.
Anopheles fluviatilis James is an important malaria vector in India, Pakistan, Nepal, and Iran. It has now been recognized as a complex of at least four sibling species—S, T, U, and V, among which species T is the most widely distributed species throughout India. The taxonomic status of these species is confusing owing to controversies prevailing in the literature. In addition, chromosomal inversion genotypes, which were considered species-diagnostic for An. fluviatilis species T, are unreliable due to the existence of polymorphism in some populations. To study the genetic diversity at population level, we isolated and characterized 20 microsatellite markers from microsatellite-enriched genomic DNA library of An. fluviatilis T, of which 18 were polymorphic while two were monomorphic. The number of alleles per locus among polymorphic markers ranged from 4 to 19, and values for observed and expected heterozygosities varied from 0.352 to 0.857 and from 0.575 to 0.933, respectively. Thirteen markers had cross-cryptic species transferability to species S and U of the Fluviatilis Complex. This study provides a promising genetic tool for the population genetic analyses of An. fluviatilis.
VECTOR CONTROL, PEST MANAGEMENT, RESISTANCE, REPELLENTS
Sublethal exposure to pesticides can alter insect behavior with potential for population-level consequences. We investigated sublethal effects of ActiveGuard, a permethrin-impregnated fabric, on feeding behavior and fecundity of bed bugs (Cimex lectularius L.) from five populations that ranged from susceptible to highly pyrethroid resistant. After exposure to ActiveGuard fabric or untreated fabric for 1 or 10 min, adult virgin female bed bugs were individually observed when offered a blood meal to determine feeding attempts and weight gain. Because bed bug feeding behavior is tightly coupled with its fecundity, all females were then mated, and the number of eggs laid and egg hatch rate were used as fecundity measures. We observed that pyrethroid-resistant and -susceptible bugs were not significantly different for all feeding and fecundity parameters. Bed bugs exposed to ActiveGuard for 10 min were significantly less likely to attempt to feed or successfully feed, and their average blood meal size was significantly smaller compared with individuals in all other groups. Independent of whether or not feeding occurred, females exposed to ActiveGuard for 10 min were significantly more likely to lay no eggs. Only a single female exposed to ActiveGuard for 10 min laid any eggs. Among the other fabric treatment—exposure time groups, there were no observable differences in egg numbers or hatch rates. Brief exposure of 10 min to ActiveGuard fabric appeared to decrease feeding and fecundity of pyrethroid-resistant and susceptible bed bugs, suggesting the potentially important role of sublethal exposure for the control of this ectoparasitic insect.
Triatoma dimidiata (Latreille, 1811) is the most abundant and significant insect vector of the parasite Trypanosoma cruzi in Central America, and particularly in Guatemala. Tr. cruzi is the causative agent of Chagas disease, and successful disease control requires understanding the geographic distribution and degree of migration of vectors such as T. dimidiata that frequently re-infest houses within months following insecticide application. The population genetic structure of T. dimidiata collected from six villages in southern Guatemala was studied to gain insight into the migration patterns of the insects in this region where populations are largely domestic. This study provided insight into the likelihood of eliminating T. dimidiata by pesticide application as has been observed in some areas for other domestic triatomines such as Triatoma infestans. Genotypes of microsatellite loci for 178 insects from six villages were found to represent five genetic clusters using a Bayesian Markov Chain Monte Carlo method. Individual clusters were found in multiple villages, with multiple clusters in the same house. Although migration occurred, there was statistically significant genetic differentiation among villages (FRT = 0.05) and high genetic differentiation among houses within villages (FSR = 0.11). Relatedness of insects within houses varied from 0 to 0.25, i.e., from unrelated to half-sibs. The results suggest that T. dimidiata in southern Guatemala moves between houses and villages often enough that recolonization is likely, implying the use of insecticides alone is not sufficient for effective control of Chagas disease in this region and more sustainable solutions are required.
Permethrin is a commonly used acaricide for tick control on domestic animals and in residential environments, while fipronil use is restricted to on-animal treatment. Following widespread reports of permethrin and fipronil application failures to control indoor infestations of Rhipicephalus sanguineus (Latreille), the brown dog tick, 31 tick populations were obtained from Florida and Texas for acaricide resistance screening. These field-collected ticks from kennels and residential facilities were challenged with technical grade permethrin and fipronil to create dose response curves that were compared with an acaricide-susceptible strain. Permethrin resistance was successfully screened in nine populations, all of which were resistant or highly resistant. Tick susceptibility to fipronil was conducted on four populations, which were found to be tolerant, with resistance ratios below 10. This is the first documentation of R. sanguineus permethrin resistance and fipronil tolerance in the United States. Potential causes of resistance development and recommendations on future brown dog tick control management plans are discussed.
The aim of this research was to evaluate larvicidal activity of the essential oil of Allium tuberosum Rottler ex Sprengle roots and its constituents against larval mosquitoes (Aedes albopictus Skuse). Essential oil of A. tuberosum was obtained by hydrodistillation and analyzed by gas chromatography and gas chromatography—mass spectrometry. The major constituents of the oil were found to be sulfur-containing compounds, including allyl methyl trisulfide (35.19%), diallyl disulfide (28.31%), diallyl trisulfide (20.91%), and dimethyl trisulfide (12.33%). The essential oil of A. tuberosum exhibited larvicidal activity against the fourth-instar larvae of Ae. albopictus, with an LC50 value of 18 µg/ml. The constituents compounds—diallyl trisulfide (LC50 = 4µg/ml) and diallyl disulfide (LC50 = 6 µg/ ml)—possessed stronger larvicidal activity than allyl methyl trisulfide (LC50 = 27 µg/ml) and dimethyl trisulfide (LC50 = 35 µg/ml) against the fourth-instar larvae of Ae. albopictus. The results indicated that the essential oil of A. tuberosum and its major constituents have good potential as a source for natural larvicides.
Japanese encephalitis (JE) and lymphatic filariasis (LF) are endemic in estern part of Uttar Pradesh in India and transmitted by Culex mosquitoes (Diptera: Culicidae). JE vaccination and mass drug administration for JE and LF management is being undertaken respectively. In addition to this, indoor residual spraying and fogging are used for the control of mosquito vectors. Organophosphate resistance in mosquito is dependent on alteration in acetylcholinesterase (Ace) gene. Hence, it is important to evaluate organophosphate resistance in Culex tritaeniorhynchus Giles (JE vector) and Culex quinquefasciatus Say (LF vector). The current study showed the presence of resistant populations and F331W mutation in Cx. tritaeniorhynchus and G119S mutation in Cx. quinquefasciatus insensitive Ace genes. Resistant populations of these two vectors increase the chances of spreading of resistance in the natural population and may cause failure of intervention programs that include organophosphates against these two vectors in future.
The simultaneous transmission of chikungunya virus (CHIKV) and dengue viruses (DENV) has been a major public health concern because of their sympatric distribution and shared mosquito vectors. Groups of Aedes aegypti (L.) and Aedes albopictus (Skuse) were orally infected with 1.5 × 105 PFU/ml of CHIKV and 3.2 × 106 FFU/ml of DENV-2 simultaneously or separately in inverse orders and evaluated for dissemination and transmission by qRT-PCR. Simultaneous dissemination of both viruses was detected for all groups in Ae. aegypti and Ae. albopictus while cotransmission of CHIKV and DENV-2 only occurred at low rates after sequential but not simultaneous infection.
Ochlerotatus triseriatus (Say), the primary vector of La Crosse virus (LAC), develops in a variety of natural and artificial aquatic containers where it often co-occurs with larvae of other mosquito species. We conducted a field study at two woodlots (South Farms and Trelease Woods) in Urbana, IL, to examine how container type influences vector abundance, body size, and susceptibility to LAC. Mosquito pupae were collected from tree holes, plastic bins, and waste tires, and eclosing adults were identified to species morphologically. Oc. triseriatus and Ochlerotatus japonicus (Theobald) females were orally challenged with LAC and midgut infection rate, disseminated infection rate, and body titer were determined by reverse-transcriptase real-time PCR. Oc. triseriatus was the dominant species collected in tree holes while Oc. japonicus and Culex restuans (Theobald) were mostly dominant in artificial containers. Female Oc. triseriatus and Oc. japonicus collected from plastic bins were significantly larger than those collected from tree holes or waste tires. Oc. japonicus females from South Farms were also significantly larger than those from Trelease Woods. Oc. triseriatus females collected from plastic bins and waste tires were significantly more susceptible to LAC infection relative to females collected from tree holes. In addition, Oc. triseriatus females from waste tires had significantly higher LAC titer relative to Oc. triseriatus from tree holes. For each container type and study site, wing length was not correlated to infection or dissemination rates. These findings suggest that the container type in which Oc.triseriatus develop may contribute to the spatial and temporal dynamics of LAC transmission.
Multiple mosquito-borne parasites cocirculate in nature and potentially interact. To understand the community of parasites cocirculating with West Nile virus (WNV), we screened the bloodmeal content of Culex pipiens L. mosquitoes for three common types of hemoparasites. Blood-fed Cx. pipiens were collected from a WNV-epidemic area in suburban Chicago, IL, from May to September 2005 through 2010. DNA was extracted from dissected abdomens and subject to PCR and direct sequencing to identify the vertebrate host. RNA was extracted from the head or thorax and screened for WNV using quantitative reverse transcriptase PCR. Seventy-nine engorged females with avian host origin were screened using PCR and amplicon sequencing for filarioid nematodes, Haemosporida, and trypanosomatids. Filarioid nematodes were identified in 3.8% of the blooded abdomens, Plasmodium sp. in 8.9%, Haemoproteus in 31.6%, and Trypanosoma sp. in 6.3%. The sequences from these hemoparasite lineages were highly similar to sequences from birds in prior studies in suburban Chicago. Overall, 50.6% of blood-fed Culex pipiens contained hemoparasite DNA in their abdomen, presumably from current or prior bloodmeals. Additionally, we detected hemoparasite DNA in the blooded abdomen of three of 10 Cx. pipiens infected with WNV.
Negative effects of flea (Siphonaptera) parasitism on the host may be expressed in different ways. The aim of this study was to assess distribution of the flea fauna in nests of dormice in Lithuania. Nests of Glis glis (L.), Dryomys nitedula (Pallas), and Muscardinus avellanarius (L.) were collected from nest boxes in 2012 and 2013. Fleas were collected from nests in the laboratory and put into plastic tubes with 70% ethanol. Flea species were identified using morphological keys. From 400 nest boxes, 112 nests of dormice were collected from eight sites from mixed forests of central Lithuania. Twenty-three nests of G. glis were collected from nest boxes, with 16 of them containing 286 fleas belonging to four species: Ceratophyllus sciurorum (Schrank) (259), C. gallinae (Schrank) (23), Hystrichopsylla talpae (Curtis) (3), and Megabothris turbidus (Rothschild) (1). Fourteen nests of M. avellanarius were collected from nest boxes, 4 of which contained 224 fleas belonging to two species: C. sciurorum (221) and C. gallinae (3). Twenty-four nests of D. nitedula were collected from nest boxes, including 17 containing 207 fleas belonging to two species: C. sciurorum (205) and C. gallinae (2). Fifty-one nests of undetermined dormice species also were collected from nest boxes, 12 of them contained 395 fleas belonging to three species: C. sciurorum (374), Ctenophthalmus agyrtes (Heller) (19), and Ctenophthalmus assimilis (Taschenberg) (2). C. sciurorum was a predominant species in the nests of dormice. The occurrence of C. gallinae was documented in Lithuania for the first time.
Members of the Anopheles gambiae sensu lato (Giles) complex define a group of seven morphologically indistinguishable species, including the principal malaria vectors in Sub-Saharan Africa. Members of this complex differ in behavior and ability to transmit malaria; hence, precise identification of member species is critical to monitoring and evaluating malaria threat levels. We collected mosquitoes from five counties in Liberia every other month from May 2011 until May 2012, using various trapping techniques. A. gambiae complex members were identified using molecular techniques based on differences in the ribosomal DNA (rDNA) region between species and the molecular forms (S and M) of A. gambiae sensu stricto (s.s) specimens. In total, 1,696 A. gambiae mosquitoes were collected and identified. DNA was extracted from legs of each specimen with species identification determined by multiplex polymerase chain reaction using specific primers. The molecular forms (M or S) of A. gambiae s.s were determined by restriction fragment length polymorphism. Bivariate and multivariate logistic regression models identified environmental variables associated with genomic differentiation. Our results indicate widespread occurrence of A. gambiae s.s., the principal malaria vector in the complex, although two Anopheles melas Theobald/A. merus Donitz mosquitoes were detected. We found 72.6, 25.5, and 1.9% of A. gambiae s.s specimens were S, M, and hybrid forms, respectively. Statistical analysis indicates that the S form was more likely to be found in rural areas during rainy seasons and indoor catchments. This information will enhance vector control efforts in Liberia.
Cyclopentanone is a saturated monoketone typically used as an intermediate in the manufacture of pharmaceuticals, biologicals, insecticides, and rubber chemicals. Recently, it has been demonstrated that cyclopentanone activates the cpA CO2 receptor neuron on the maxillary palp of mosquitoes, suggesting that it may be a viable alternative to CO2 as an attractant for mosquitoes. Furthermore, semifield experiments showed that traps baited with cyclopentanone attract Culex quinquefasciatus Say at a similar rate to those baited with CO2. We evaluated the field efficacy of cyclopentanone as an alternative to CO2 in Centers for Disease Control (CDC) light traps and counterflow geometry (CFG) traps commonly used to collect mosquitoes in surveillance programs. Three pairwise trials and four Latin square trials were conducted across three peri-urban sites, comprising two saltwater sites and one freshwater site, in southeast Queensland, Australia. In all trials, CO2-baited traps outperformed traps baited with cyclopentanone. Carbon dioxide-baited CDC traps collected significantly more total mosquitoes, Aedes vigilax (Skuse), Culex sitiens Weidemann, and Culex annulirostris Skuse, than those baited with ≥99% cyclopentanone in pairwise trials. Similarly, in almost all Latin square trials, CO2-baited CDC and CFG traps collected significantly greater numbers of total mosquitoes, Ae. vigilax, Cx. annulirostris, Culex orbostiensis Dobrotworsky, and Cx. sitiens when compared with CFG traps baited with 20% cyclopentanone. Our trials indicate that cyclopentanone is not effective as a mosquito attractant in the field and cannot be used as a simple substitute for CO2 in commonly used mosquito surveillance traps.
Following the introduction of West Nile virus into California during the summer of 2003, public health and vector control programs expanded surveillance efforts and were in need of diagnostics capable of rapid, sensitive, and specific detection of arbovirus infections of mosquitoes to inform decision support for intervention. Development of a multiplex TaqMan or real-time semiquantitative reverse transcription polymerase chain reaction (RT-PCR) assay in which three virus specific primer—probe sets were used in the same reaction is described herein for the detection of western equine encephalomyelitis, St. Louis encephalitis and West Nile viral RNA. Laboratory validation and field data from 10 transmission seasons are reported. The comparative sensitivity and specificity of this multiplex assay to singleplex RT-PCR as well as an antigen detection (rapid analyte measurement platform) and standard plaque assays indicate this assay to be rapid and useful in providing mosquito infection data to estimate outbreak risk.
Rocky Mountain spotted fever (RMSF), caused by the etiological agent Rickettsia rickettsii, is the most severe and frequently reported rickettsial illness in the United States, and is commonly diagnosed throughout the southeast. With the discoveries of Rickettsia parkeri and other spotted fever group rickettsiae (SFGR) in ticks, it remains inconclusive if the cases reported as RMSF are truly caused by R. rickettsii or other SFGR. Arkansas reports one of the highest incidence rates of RMSF in the country; consequently, to identify the rickettsiae in Arkansas, 1,731 ticks, 250 white-tailed deer, and 189 canines were screened by polymerase chain reaction (PCR) for the rickettsial genes gltA, rompB, and ompA. None of the white-tailed deer were positive, while two of the canines (1.1%) and 502 (29.0%) of the ticks were PCR positive. Five different tick species were PCR positive: 244 (37%) Amblyomma americanum L., 130 (38%) Ixodes scapularis Say, 65 (39%) Amblyomma maculatum (Koch), 30 (9%) Rhipicephalus sanguineus Latreille, 7 (4%) Dermacentor variabilis Say, and 26 (44%) unidentified Amblyomma ticks. None of the sequenced products were homologous to R. rickettsii. The most common Rickettsia via rompB amplification was Rickettsia montanensis and nonpathogenic Candidatus Rickettsia amblyommii, whereas with ompA amplification the most common Rickettsia was Ca. R. amblyommii. Many tick specimens collected in northwest Arkansas were PCR positive and these were commonly A. americanum harboring Ca. R. amblyommii, a currently nonpathogenic Rickettsia. Data reported here indicate that pathogenic R. rickettsii was absent from these ticks and suggest by extension that other SFGR are likely the causative agents for Arkansas diagnosed RMSF cases.
Culex (Melanoconion) erraticus (Dyar and Knab) is now established in southern Ontario, Canada. This species was first discovered in 2002 during a province-wide adult mosquito surveillance program for West Nile virus. Using CO2-baited CDC miniature light traps, a few Cx. erraticus were collected from 2002 to 2011, but the total number increased during the 2012 and 2013 seasons. The number of Ontario Public Health Units with records for Cx. erraticus has also increased since 2002, demonstrating that the geographic distribution of this species is expanding northward. Cx. erraticus is a potential arboviral bridge vector for a number of pathogens and its establishment in Ontario should be considered a potential public health concern.
Arthropods can be captured by two modes: a passive mode using traps or an active mode mainly based on the use of mouth or powered aspirators. These apparatuses are useful tools for collecting large numbers of crawling, flying, resting, or jumping arthropod specimens, particularly small specimens, such as mosquitoes or sandflies, for laboratory experiments or breeding. Different aspirator models are used to collect various arthropod specimens. However, to our knowledge, no specific system is currently available for the reliable sampling of live bed bugs in the field. Thus, we described a new system based on a classic autonomous house aspirator that requires few modifications for the collecting bed bugs. The low weight and size of this apparatus is advantageous, and it provides for rapid and secure bed bug sampling for medical entomology purposes.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere