Aedes aegypti (L.) is the vector responsible for transmitting dengue, chikungunya, yellow fever, and Zika viruses, as well as other pathogens. Microbial larvicides based on Bacillus thuringiensis Berliner israelensis (Bti) and Saccharopolyspora spinosa Mertz and Yao, such as VectoBac 12AS and Natular 2EC, have been shown to be effective in reducing larval populations of Ae. aegypti. We examined the gene expression of two detoxification enzymes, glucosyl and glucuronosyl transferases (AaeGGT1 and AaeGGT2), through developmental stages and a time course study in response to larvicide exposure using qualitative real-time polymerase chain reaction (qPCR). AaeGGT1 and AaeGGT2 gene expressions were differentially regulated during development of the immature stages.We also found that male adults had higher expression than female adults after controlling for age effects. AaeGGT1 and AaeGGT2 gene expression were both upregulated in response to VectoBac 12AS and Natular 2EC treatments with the maximum level of expression occurring 24h after treatment applications. This information sheds light on larvicideinduced changes in the physiology of Ae. aegypti with implications for development of mosquito control strategies.
How to translate text using browser tools
25 February 2017
Transcriptional Profile for Detoxification Enzymes AeaGGT1 and AaeGGT2 From Aedes aegypti (Diptera: Culicidae) in Response to Larvicides
Liming Zhao,
Barry W. Alto,
Dagne Duguma
ACCESS THE FULL ARTICLE
It is not available for individual sale.
This article is only available to subscribers.
It is not available for individual sale.
It is not available for individual sale.
Journal of Medical Entomology
Vol. 54 • No. 4
July 2017
Vol. 54 • No. 4
July 2017
Aedes aegypti
larvicide
metabolic detoxification
Natular 2EC
VectoBac 12AS