How to translate text using browser tools
13 March 2017 Effect of Temperature Thresholds on Modeled Aedes aegypti (Diptera: Culicidae) Population Dynamics
Heidi E. Brown, Roberto Barrera, Andrew C. Comrie, Joceline Lega
Author Affiliations +
Abstract

Dynamic simulation models provide vector abundance estimates using only meteorological data. However, model outcomes may heavily depend on the assumptions used to parameterize them. We conducted a sensitivity analysis for a model of Aedes aegypti (L.) abundance using weather data from two locations where this vector is established, La Margarita, Puerto Rico and Tucson, Arizona. We tested the effect of simplifying temperature-dependent development and mortality rates and of changing development and mortality thresholds as compared with baselines estimated using biophysical models. The simplified development and mortality rates had limited effect on abundance estimates in either location. However, in Tucson, where the vector is established but has not transmitted viruses, a difference of 5 °C resulted in populations either surviving or collapsing in the hot Arizona mid-summer, depending on the temperature thresholds. We find three important implications of the observed sensitivity to temperature thresholds. First, this analysis indicates the need for better estimates of the temperature tolerance thresholds to refine entomologic risk mapping for disease vectors. Second, our results highlight the importance of extreme temperatures on vector survival at the marginal areas of this vector's distribution. Finally, the model suggests that adaptation to warmer temperatures may shift regions of pathogen transmission.

© The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Heidi E. Brown, Roberto Barrera, Andrew C. Comrie, and Joceline Lega "Effect of Temperature Thresholds on Modeled Aedes aegypti (Diptera: Culicidae) Population Dynamics," Journal of Medical Entomology 54(4), 869-877, (13 March 2017). https://doi.org/10.1093/jme/tjx041
Received: 7 October 2016; Accepted: 16 January 2017; Published: 13 March 2017
JOURNAL ARTICLE
9 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

KEYWORDS
Aedes aegypti
Climate
population dynamics
temperature threshold
RIGHTS & PERMISSIONS
Get copyright permission
Back to Top