Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
When E.F. Knipling conceived of the release of sexually sterile insects to suppress wild populations, he laid down several fundamental qualities that characterized suitable target species—some of which mosquitoes generally violate—including high reproductive rates and large population numbers. Regardless of this, their global importance in public health has led numerous research teams to attempt to use the mosquito sterile insect technique against several species. Because of the degree of financial commitment required for suppression programs, most releases have consisted of preliminary investigations of male performance, population characteristics, and production methods. Those that have accomplished suppression provide important insights regarding the challenges of production, dispersal, and immigration. Insights gained from these studies remain relevant today, regardless of the genetic control technology being applied. In this article, I highlight studies that were notable for the insights that were gained, the intrinsic difficulties that mosquitoes present, and synthesize these into recommendations for successful applications of the sterile insect technique and newer technologies to mosquitoes.
The current review of the Sterile InsectTechnique (SIT) is motivated by new technologies and the recent renaissance of male release field trials, which is driving an evolution in mosquito control and regulation. Practitioners that are releasing male mosquitoes would do well to learn from past successes and failures, including political and public engagement complications. With examples that include nuanced integrations of the different technologies, e.g., combinations of Wolbachia and irradiation, it is critical that scientists understand and communicate accurately about the technologies, including their evolving management by different regulatory agencies in the USA. Some male release approaches are considered ‘pesticides’ and regulated by federal and state agencies, while other male release approaches are unregulated. It is important to consider how the new technologies fit with the more ‘traditional’ chemical applications of adulticides and larvicides. The economics of male release programs are substantially different from traditional control costs, which can be a challenge to their adoption by abatement districts. However, there is substantial need to overcome these complications and challenges, because the problem with invasive mosquitoes grows ever worse with factors that include insecticide resistance, globalization and climate change.
Arthropod-borne viruses (arboviruses) such as dengue, Zika, and chikungunya viruses cause morbidity and mortality among human populations living in the tropical regions of the world. Conventional mosquito control efforts based on insecticide treatments and/or the use of bednets and window curtains are currently insufficient to reduce arbovirus prevalence in affected regions. Novel, genetic strategies that are being developed involve the genetic manipulation of mosquitoes for population reduction and population replacement purposes. Population replacement aims at replacing arbovirus-susceptible wild-type mosquitoes in a target region with those that carry a laboratory-engineered antiviral effector to interrupt arboviral transmission in the field. The strategy has been primarily developed for Aedes aegypti (L.), the most important urban arbovirus vector. Antiviral effectors based on long dsRNAs, miRNAs, or ribozymes destroy viral RNA genomes and need to be linked to a robust gene drive to ensure their fixation in the target population. Synthetic gene-drive concepts are based on toxin/antidote, genetic incompatibility, and selfish genetic element principles. The CRISPR/Cas9 gene editing system can be configurated as a homing endonuclease gene (HEG) and HEG-based drives became the preferred choice for mosquitoes. HEGs are highly allele and nucleotide sequence-specific and therefore sensitive to single-nucleotide polymorphisms/resistant allele formation. Current research efforts test new HEG-based gene-drive designs that promise to be less sensitive to resistant allele formation. Safety aspects in conjunction with gene drives are being addressed by developing procedures that would allow a recall or overwriting of gene-drive transgenes once they have been released.
Over the last few decades, a substantial number of anti-malarial effector genes have been evaluated for their ability to block parasite infection in the mosquito vector. While many of these approaches have yielded significant effects on either parasite intensity or prevalence of infection, just a few have been able to completely block transmission. Additionally, many approaches, while effective against the parasite, also disrupt or alter important aspects of mosquito physiology, leading to corresponding changes in lifespan, reproduction, and immunity. As the most promising approaches move towards field-based evaluation, questions of effector gene robustness and durability move to the forefront. In this forum piece, we critically evaluate past effector gene approaches with an eye towards developing a deeper pipeline to augment the current best candidates.
SPECIAL COLLECTION: 2020 HIGHLIGHTS OF MEDICAL, URBAN, AND VETERINARY ENTOMOLOGY
Medical Entomology as a field is inherently global – thriving on international and interdisciplinary collaborations and affected dramatically by arthropod and pathogen invasions and introductions. This past year also will be remembered as the year in which the SARS-CoV-2 COVID-19 pandemic affected every part of our lives and professional activities and impacted (or changed, sometimes in good ways) our ability to collaborate and detect or respond to invasions. This incredible year is the backdrop for the 2020 Highlights in Medical Entomology. This article highlights the broad scope of approaches and disciplines represented in the 2020 published literature, ranging from sensory and chemical ecology, population genetics, impacts of human-mediated environmental change on vector ecology, life history and the evolution of vector behaviors, to the latest developments in vector surveillance and control.
SPECIAL COLLECTION: 2020 HIGHLIGHTS OF MEDICAL, URBAN, AND VETERINARY
ENTOMOLOGY
Pest management professionals aim to answer two primary questions for their customers: 1) ‘Where/What is the pest?’ and 2) ‘How do I kill it?’. These two questions drive at the core of any pest management program. 2020 was an exciting year for entomology research, with much work being done on novel technologies and methods for detecting and controlling pests. The objectives of the current publication were to discuss papers published in 2020 that addressed the key pest management objectives of 1) monitoring and 2) controlling pest populations.
The field of veterinary entomology is primarily associated with the study of arthropods that impact the health of animals. Papers featured in the compilation of highlighted research from 2020 focused on studies conducted by scientists from the federal government that sought to understand and manage arthropods associated with wild and domesticated animals. The topics of these articles included research from the basic tenets of veterinary entomology: 1) biology and ecology of economically important pests, 2) novel control tactics and resistance management, 3) genomics, and 4) pathogen transmission. Key findings of the highlighted papers are presented and discussed to serve as a presentation record.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere