Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Impressions of soft-bodied Ediacaran megafossils are common in deep-water slope deposits of the June beds at Sekwi Brook in the Mackenzie Mountains of NW Canada. Two taphonomic assemblages can be recognized. Soles of turbidite beds contain numerous impressions of simple (Aspidella) and tentaculate (Hiemalora, Eoporpita) discs. A specimen of the frond Primocandelabrum is attached to an Aspidella-like holdfast, but most holdfast discs lack any impressions of the leafy fronds to which they were attached, reflecting Fermeuse-style preservation of the basal level of the community. Epifaunal fronds (Beothukis, Charnia, Charniodiscus) and benthic recliners (Fractofusus) were most commonly preserved intrastratally on horizontal parting surfaces within turbidite and contourite beds, reflecting a deep-water example of Nama-style preservation of higher levels in the community. A well-preserved specimen of Namalia significantly extends the known age and environmental range of erniettomorphs into deep-water aphotic settings. Infaunal bilaterian burrows are absent from the June beds despite favorable beds for their preservation. The June beds assemblage is broadly similar in age and environment to deep-water Avalonian assemblages in Newfoundland and England, and like them contains mainly rangeomorph and arboreomorph fossils and apparently lacks dickinsoniomorphs and other clades typical of younger and shallower Ediacaran assemblages. Fossil data presently available imply that the classically deep- and shallow-water taxa of the Ediacara biota had different evolutionary origins and histories, with sessile rangeomorphs and arboreomorphs appearing in deep-water settings approximately 580 million years ago and spreading into shallow-water settings by 555 Ma but dickinsoniomorphs and other iconic clades restricted to shallow-water settings from their first known appearance at 555 Ma until their disappearance prior to the end of the Ediacaran.
Metazoans (multicellular animals) evolved during the Ediacaran Period as shown by the record of their imprints, carbonaceous compressions, trace fossils, and organic bodies and skeletal fossils. Initial evolutionary experiments produced unusual bodies that are poorly understood or conceived of as non-metazoan. It is accepted that sponges, ctenophorans, cnidarians, placozoans, and bilaterians were members of the Ediacaran fauna, many of which have uncertain affinities. The fossil Sabellidites cambriensis Yanishevsky, 1926, derived from the terminal Ediacaran strata, is the earliest known organically preserved animal that belonged to a newly evolving fauna, which replaced the Ediacara-type metazoans. Morphologically simple soft-bodied tubular fossils, such as S. cambriensis, and biomineralized, as contemporaneous Sinotubulites sp., are not easy to recognize phylogenetically because many unrelated organisms developed encasing tubes independently. Therefore, in addition to morphologic information, evidence derived from the microstructure of the organic wall and its biochemistry may be vital to resolving fossil origins and phylogenetic relationships. Here we present morphological, microstructural and biogeochemical studies on S. cambriensis using various microscopic and spectroscopic techniques, which provide new evidence that supports its siboglinid, annelidan affinity. The late Ediacaran age of Sabellidites fossil constrains the minimum age of siboglinids and the timing of the divergence of including them annelids by fossil record and this could be tested using molecular clock estimates. The fine microstructure of the organic tube in Sabellidites is multi-layered and has discrete layers composed of differently orientated and perfectly shaped fibers embedded in an amorphous matrix. The highly ordered and specific pattern of fiber alignment (i.e., the texture of organic matter) is similar to that of representatives of the family Siboglinidae. The biogeochemistry of the organic matter that comprised the tube, which was inferred from its properties, composition, and microstructure, is consistent with chitin and proteins as in siboglinids.
Ediacara-type fossils are found in a diverse array of preservational styles, implying that multiple taphonomic mechanisms might have been responsible for their preservational expression. For many Ediacara fossils, the “death mask” model has been invoked as the primary taphonomic pathway. The key to this preservational regime is the replication or sealing of sediments around the degrading organisms by microbially induced precipitation of authigenic pyrite, leading toward fossil preservation along bedding planes. Nama-style preservation, on the other hand, captures Ediacaran organisms as molds and three-dimensional casts within coarse-grained mass flow beds, and has been previously regarded as showing little or no evidence of a microbial preservational influence. To further understand these two seemingly distinct taphonomic pathways, we investigated the three-dimensionally preserved Ediacaran fossil Pteridinium simplex from mass flow deposits of the upper Kliphoek Member, Dabis Formation, Kuibis Subgroup, southern Namibia. Our analysis, using a combination of petrographic and micro-analytical methods, shows that Pteridinium simplex vanes are replicated with minor pyrite, but are most often represented by open voids that can be filled with secondary carbonate material; clay minerals are also found in association with the vanes, but their origin remains unresolved. The scarcity of pyrite and the development of voids are likely related to oxidative weathering and it is possible that microbial activities and authigenic pyrite may have contributed to the preservation of Pteridinium simplex; however, any microbes growing on P. simplex vanes within mass flow deposits were unlikely to have formed thick mats as envisioned in the death mask model. Differential weathering of replicating minerals and precipitation of secondary minerals greatly facilitate fossil collection and morphological characterization by allowing Pteridinium simplex vanes to be parted from the massive hosting sandstone.
Here we reconstruct a new tubular, serially divided organism with a bilateral morphology from the Ediacaran of South Australia. The organism, Plexus ricei new genus new species, was a broadly curving tube that resided on the Ediacaran seafloor. Plexus ricei individuals range in size from 5 to 80 cm long and 5 to 20 mm wide, and are comprised of two main components: a rigid median tubular structure and a fragile outer tubular wall. Plexus ricei is preserved as an external mold on bed soles, and as a counterpart cast on bed tops in sandstones interpreted to represent deposition between storm and fairweather wave-base. The phylogenetic affinities of P. ricei are uncertain; P. ricei symmetry implies a bilaterian origin, but a lack of defined anterior and posterior ends precludes definitive assignment.
Elainabella deepspringensis new genus new species is a one-mm-wide, non-biomineralized, three-dimensionally preserved fossil with segmented branches and apparent cellular structure. A single specimen was recovered from an interval of black shale within the Ediacaran portion of the Esmeralda Member of the Deep Spring Formation at Mt. Dunfee in Esmeralda County, Nevada. We interpret the fossil to be the thallus of a multicellular alga of uncertain division. EDS spectral analysis indicates that the exceptional preservation is not due to phosphatization or pyritization. Rather, it appears to be a case of Burgess Shale-type preservation, involving the kerogenization of non-mineralizing organisms. The fossil-bearing shale is closely associated with stromatolites, and we suggest that E. deepspringensis may have been an epibiont on stromatolites or other firm substrates. This is the first multicellular alga and the first occurrence of Burgess Shale-type preservation reported from the Ediacaran of Laurentia.
When each of the Avalon-, Ediacara-, and Nama-type fossil assemblages are tracked through geological time, there appear to be changes in species composition and diversity, almost synchronized between different sedimentary environments, allowing a subdivision of the late Ediacaran into the Redkinian, Belomorian and Kotlinian geological time intervals. The Redkinian (580–559 Ma) is characterized by first appearance of both eumetazoan traces and macroscopic organisms (frondomorphs and vendobionts) in a form of Avalon-type communities in the inner shelf environment, whereas coeval Ediacara-type communities remained depauperate. The Belomorian (559–550 Ma) is marked by the advent of eumetazoan burrowing activity in the inner shelf, diversification of frondomorphs, migration of vendobionts from the inner shelf into higher energy environments, and appearance of tribrachiomorphs and bilateralomorphs. Ediacaran organisms formed distinctive ecological associations that coexisted in the low-energy inner shelf (Avalon-type communities), in the wave- and current-agitated shoreface (Ediacara-type communities), and in the high-energy distributary systems (Nama-type communities). The Kotlinian (550–540 Ma) witnessed an expansion of the burrowing activity into wave- and current-agitated shoreface, disappearance of vendobionts, tribrachiomorphs and bilateralomorphs in wave- and current-agitated shoreface, together with a drop in frondomorph diversity. High-energy distributary channel systems of prodeltas served as refugia for Nama-type communities that survived until the end of the Ediacaran and disappeared when the burrowing activity reached high-energy environments. This pattern is interpreted as an expression of ecosystem engineering by eumetazoans, with the Ediacaran organisms being progressively outcompeted by bilaterians.
Ediacara fan-shaped sets of paired scratches Kimberichnus teruzzii from the Ediacara Member of the Rawnsley Quartzite, South Australia, and the White Sea region of Russia, represent the earliest known evidence in the fossil record of feeding traces associated with the responsible bilaterian organism. These feeding patterns exclude arthropod makers and point to the systematic feeding excavation of seafloor microbial mats by large bilaterians of molluscan grade. Since the scratch traces were made into microbial mats, animals could crawl over previous traces without disturbing them. The trace maker is identified as Kimberella quadrata, whose death masks co-occur with the mat excavation traces in both Russia and South Australia. The co-occurrence of animals and their systematic feeding traces in the record of the Ediacara biota supports previous trace fossil evidence that bilaterians existed globally before the Cambrian explosion of life in the ocean.
Here we describe large, complex trace fossils in the late Ediacaran Omkyk Member of the Zaris Formation, Nama Group, southern Namibia. The horizontal trace fossils are preserved on a number of talus blocks from a bedding plane of a cm-thick sandstone lens from a single stratigraphic horizon less than 100 m below an ash bed dated at 547.3 ± 0.7 Ma. The forms consist of overlapping U-shaped spreiten elements with parallel limbs surrounded by an outer tube. Individual U-shaped elements are 0.2 to 1 cm in diameter, the outer tube is less than 3 mm in diameter, and the forms as a whole range from 5 to 30 cm long and 3 to 10 cm wide. The specimens commonly show a change in direction and change in diameter. The morphology of these trace fossils is comparable to backfill structures, particularly specimens of Paleozoic Zoophycos from shallow water environments. Here we interpret these horizontal spreiten-burrows to record the grazing of the trace-maker on or below a textured organic surface. The identification of large late Ediacaran trace fossils is consistent with recent reports of backfilled horizontal burrows below the Precambrian–Cambrian boundary and is suggestive of the appearance of complex feeding habits prior to the Cambrian trace fossil explosion.
Ediacaran and early Cambrian strata in NW Canada contain abundant trace fossils that record the progressive development of complex behavior in early animal evolution. Five feeding groups can be recognized: microbial grazing, deposit-feeding, deposit-feeding/predatory, filter-feeding/predatory, and arthropod tracks and trails. The lower Blueflower Formation (ca. 560–550 Ma) contains abundant burrows that completely cover bedding surfaces with small (∼1 mm diameter) cylindrical burrows that were strictly restricted to microbial bedding surfaces and exhibited only primitive and inconsistent avoidance strategies. The upper Blueflower contains three-dimensional avoidance burrows and rare filter-feeding or possibly predatory burrows, suggesting increased behavioral responses in food gathering that marked the beginning of the agronomic revolution in substrate utilization. Cambrian strata of the Ingta Formation contain systematically meandering burrows and more diverse feeding strategies, including the onset of treptichnid probing burrows that may reflect predation. These observations imply that Ediacaran burrowers were largely characterized by crude, two-dimensional avoidance meanders that represented simple behavioral responses of individual burrowers to sensory information, and that the subsequent development of more diverse and complex feeding patterns with genetically programmed search pathways occurred during the earliest stages of the Cambrian explosion. These observations further imply that changes occurred in both the food source and substrate during the ecological transition from Proterozoic matgrounds to Phanerozoic mixgrounds.
In order to clarify the pattern of diversification and processes of biological activity during the Cambrian radiation, ichnofossils were comparatively studied in the early Cambrian sections of Newfoundland, South China and western Mongolia. Special attention was paid to size distributions of the most common ichnogenus, Planolites, and the densities of all the observed ichnofossils that preserve animal activity as expressed by bedding plane bioturbation indices (BPBI).
From the Fortune Head section in Newfoundland, a clear size increase in the ichnogenus Planolites is confirmed from the Treptichnus pedum Zone to the overlying Rusophycus avalonensis Zone. The BPBI also shows much stronger biological activity in the R. avalonensis Zone than in the T. pedum Zone. In Meishucun, South China and Gobi-Altai, Mongolia, however, a variety of Planolites sizes had already appeared in the T. pedum Zone, and the BPBI's on some bedding surfaces of the T. pedum Zone are already comparable to those in the R. avalonensis Zone in Newfoundland. In the earliest Cambrian, diversification and increase in the biological activity of the benthic fauna were diachronous in the wide geographic scale, starting earlier at lower latitudes (South China and western Mongolia) than at higher latitudes (Newfoundland), reflecting differences in the onset of Cambrian benthic animal activity under different climatic conditions.
Disc-like fossils from siltstones of the Taozichong Formation (Cambrian) in the Qingzhen area, Guizhou, South China are reported here. They are similar to some Ediacaran and Phanerozoic discoidal fossils, and assigned to Tirasiana? disciformis? Palij, 1976. Based on the study of 43 specimens, dewatering or fluid escape structures, soft-sediment loading, scratch circles or other inorganic origins are ruled out, and the fossil is interpreted as a discoidal body fossil of unknown affinities rather than trace fossils. Energy-dispersive X-ray spectroscopy and elemental mapping analyses reveal that the discoid fossils contain higher concentrations of C, Fe, and P than the surrounding matrix, indicating the possible presence of pyrite, apatite, and organic carbon as a result of authigenic mineralization in association with decay and early diagenetic processes. The possible presence of extracellular polymeric substance suggests that the discs were surrounded by thin microbial mats composed primarily of extracellular polymeric substances, which facilitated their fossilization by promoting conditions that are favorable to secondary mineral precipitation. The new specimens provide useful information about the phylogenetic affinities of these early discoidal fossils and help us to better understand the taphonomic modes of non-biomineralizing organisms in Ediacara-type and Burgess Shale-type biotas.
Phosphatized and phosphatic small shelly fossils are a major source of information concerning the evolution of animals during the early Cambrian. Although progress has been made in understanding some of these fossils, many remain enigmatic, both with regard to their phylogenetic affinities and the overall morphology of the animal from which isolated sclerites came. Two unusual fossils from the upper lower Cambrian (Qiongzhusian or Atdabanian) Xihaoping Member of the Dengying Formation from Xiaowan, Xixiang County, southeastern Shaanxi Province, China are described herein. The first of these is a cap-shaped fossil we describe as Cambroskiadeion xiaowanense new genus and species. On its concave surface it bears a spine, the base of which is covered with numerous hemispherical verruculae. The long spine indicates that this was a sclerite rather than a univalved shell, although it remains unclear from what sort of animal it came. Similar fossils have been hypothesized to be halkieriid valves; although the rarity of halkieriid sclerites in the present samples argues against this view, it is possible these fossils are part of a similar multi-element skeleton. The second fossil is Acidocharacus longiconusQin and Ding, 1988; it is known only from the Xihaoping Member and consists of a tall spine, often bearing barbs or bumps, attached to a rounded conical base. The base is covered with verruculae similar to those found on Cambroskiadeion. The function of these elements, and whether they were internal or external, remains unknown.
The early Cambrian calcareous skeletal fossil Apistoconcha Conway Morris is characterized by its two valves having posterior teeth and internal umbonal cavities. It has been reported from lower Cambrian Botomian-equivalent carbonate rocks in Australia, Mongolia, and Greenland. Here we report a new occurrence of Apistoconcha in the lower Cambrian Xinji Formation of Luonan, southeast Shaanxi Province, North China Platform. Based on material (five ventral and four dorsal valves) from the Xinji Formation, Apistoconcha cf. apheles is systematically described and the taxonomic affinity of Apistoconcha is discussed. The shell of Apistoconcha possesses an ‘antero-posterior' plane of bilateral symmetry, and its two valves apparently articulated in life, although the tooth-like structures and pits show little resemblance to the teeth and sockets, respectively, of bivalved shells of rhynchonelliform brachiopods or pelecypods. Apistoconcha cannot be assigned to the crown groups of either brachiopods or mollusks, even though functional morphological analysis indicates that Apistoconcha may be a ‘stem-group brachiopod'. Unlike Apistoconcha, the morphologically similar Tianzhushanella Liu is known only from a single type of valve lacking posterior teeth and pits. Tianzhushanella may represent either a univalved animal or a bivalved animal, the other valve of which has not yet been identified. Even though both Apistoconcha and Tianzhushanella may represent stem-group brachiopods, they probably correspond to different stages of brachiopod evolution. Thus assignment of Apistoconcha and Tianzhushanella to the same family (Tianzhushanellidae) may obscure their phylogenic implications.
A new arthropod, Haifengella corona new genus new species is described from the early Cambrian Chengjiang Lagerstätte (Series 2, Stage 3), Yunnan Province, southwest China. It is readily assignable to helmetiida based on gross morphology of the tergum. The new helmetiid is unique in having the marginal spines extending over one-third of the total body width. The weakly sclerotized tergum consists of six thoracic tergites with edge-to-edge tergite articulations. The sub-trapezoidal cephalic shield has a pair of long spines projecting from each posterolateral corner. A prehypostomal sclerite (anterior sclerite) recesses in the anterior margin of the cephalic shield, and a pair of bulges that are close to the prehypostomal sclerite in the cephalic shield are presumed to be the position of ventral eyes. Each of the thoracic tergites exhibits a pair of long spines projecting from the posterolateral corners. The semicircular pygidium carries one terminal spine and two pairs of lateral spines.
A fossil priapulid, Eximipriapulus globocaudatus new genus new species, is described from the Cambrian Chengjiang Lagerstätte of Yunnan, China. The exceptional preservation of the animal reveals morphological details that allow direct comparison with extant priapulids. The body is divisible into a partially eversible pharynx, a smooth collar, a scalid-bearing introvert, a neck with triangular scalids, an unsegmented trunk with annulations, and a distinctly expanded terminal region. Several specialized regions of the alimentary canal are recognized: a pharynx (lined by cuticle and bearing teeth), esophagus, midgut, hindgut, and a terminal anus. The sample includes a putative juvenile. The animal is inferred to have been an active burrower using a double-anchor strategy, practicing both deposit feeding and carnivory. Inclusion of Eximipriapulus in the most recent character matrix for cladistic analysis of fossil and Recent priapulids resolves the new genus within the priapulid crown group.
Fossilized animal embryos from lower Cambrian rocks provide a rare opportunity to study the ontogeny and developmental biology of early animals during the Cambrian explosion. This paper reports possible animal embryos, along with sponge spicules, hyolithelminths, and linguliformean brachiopods, from the upper Shuijingtuo Formation limestone (Cambrian Stage 3) at Changyang, Hubei Province, South China. This limestone unit has carbonate carbon and oxygen isotopic compositions similar to the upper Shuijingtuo limestone in the Yangtze Gorges area. The Shuijingtuo embryo fossils were exposed by physical fracturing, extracted with acetic acid maceration, and observed in thin sections. They were examined using light microscopy, scanning electron microscopy, energy dispersive X-ray spectroscopic elemental mapping, and micro-focus X-ray computed tomography. Most of them are poorly preserved, with a phosphatic envelope (interpreted as a chorion or fertilization envelope) surrounding sparitic calcite. In some specimens, a polygonal pattern is present on the surface, and these are interpreted as multicelled blastula embryos. In others, sets of grooves are present on the surface of a calcitic spheroidal structure, presumably representing the calcitic interior within the chorion; these grooves are superficially similar to annulations of Markuelia embryos, but their biological significance is unknown. Although their phylogenetic and taxonomic placement is largely unconstrained, the Shuijingtuo animal embryos indicate that chorions are taphonomically more robust and are selectively phosphatized. Embryos within the chorions, on the other hand, can be completely lost or entirely replaced by calcite, with only poorly preserved surficial structures. This style of preservation can be explained by a taphonomic switch from early phosphatization to later calcitization. This study illustrates the importance of combining physical fracturing with widely used acid digestion methods in the study of calcitized animal embryos, and it alludes to the possibility that many empty phosphatic vesicles recovered by acid digestion from Cambrian carbonates may be fossilized chorions.
The Order Asaphida was grouped by the presence of a ventral median suture and a globular protaspis. The Superfamily Trinucleoidea has been assigned to the Order Asaphida, based on the recognition of a globular protaspis in the Ordovician representatives of the group, and the presence of a ventral median suture in the middle Cambrian genus Liostracina which has been regarded as a primitive sister-group to the post-Cambrian trinucleoideans. Recent studies demonstrate that the ventral median suture and the globular protaspis could have evolved multiple times in the trilobite evolutionary history, casting doubt on the traditional concept of the Order Asaphida. Inclusion of the Trinucleoidea into the Order Asaphida, therefore, has to be tested. It has recently been revealed that Liostracina simesiJago and Cooper, 2005 did not possess a ventral median suture, implying that there could have been variable types of ventral suture within the genus Liostracina. Here we report the ontogeny of Liostracina tangwangzhaiensis n. sp. from the Cambrian Series 3 (middle Cambrian) strata of Shandong Province of North China. The material for this study includes protaspides, which are of flat, benthic morphology, contrasting to the globular protaspid morphology of the Ordovician trinucleoideans. The benthic protaspid morphology of L. tangwangzhaiensis indicates an independent evolution of the globular protaspis within the Superfamily Trinucleoidea. Together with the variable types of ventral suture within the genus Liostracina, the benthic protaspid morphology of Liostracina leads us to propose that the Superfamily Trinucleoidea be excluded from the Order Asaphida.
Specimens from the Wheeler and Marjum Formations of Utah comprising an elongate stipe with freely projecting conical thecae are described as dithecoid graptolites, the first reported from these units. The Wheeler Shale specimens, assigned to Archaeolafoea monegettae (Chapman, 1919), provide the first record of ArchaeolafoeaChapman, 1919 from the Cambrian of Laurentia and show clear fusellar structure in backscattered electron images, confirming a graptolite affinity for this taxon. Mastigograptus sp., described on the basis of a single well-preserved specimen from the Marjum Formation, shows for the first time in a Cambrian mastigograptid an arrangement of thecae similar to that known for Ordovician representatives of the genus.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere