Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
The earliest known interpreted spatial competition between two species of stromatoporoids, Clathrodictyon cf. C. mammillatum (Schmidt, 1858) and Labechia sp. is found in the Upper Ordovician Xiazhen Formation at Zhuzhai, South China. The interaction between these taxa was initiated by settlement of Labechia sp. on the surface of Clathrodictyon cf. C. mammillatum. Distortions of the intraskeletal elements of stromatoporoids represented by abnormally large, wide cysts and thick cyst plates in Labechia sp. are observed, along with zigzag crumpled distorted laminae and antagonistic behavior of the skeleton in Clathrodictyon cf. C. mammillatum, indicating syn-vivo interactions. The growth of Labechia sp. was terminated by the overgrowth of Clathrodictyon cf. C. mammillatum, possibly reflecting the ecological superiority of Clathrodictyon cf. C. mammillatum over Labechia sp. The observations are interpreted as competitive interaction between stromatoporoids that was most likely facultative, thus most likely occurring by chance, but the interaction allows assessment of different growth behaviors of the stromatoporoid species. Analysis of the interaction provides evidence to improve understanding of the paleoecology and growth behaviors of early stromatoporoids.
Three species of Habrostroma dominate stromatoporoid faunas in the Lower Devonian (Lochkovian) of five areas in North America: New York, Virginia, Maine, Bathurst Island, and Ellesmere Island. In addition, they occur in what could be the upper Silurian (uppermost Pridoli) of Virginia, and possibly New York. Measurements of nine morphologies from 127 specimens of Habrostroma were subjected to an average linkage cluster analysis. Using average linkage between groups, three distinct clusters were revealed. Group assignments made from the cluster analysis were saved, and entered into a canonical discriminant analysis with the nine morphological variables. An overall Wilks' lambda was calculated, and is statistically significant at alpha <0.001. The hit rate for classifying group 1 is 98%, that for group 2 is 100%, and that for group 3 is 97.9%; the total hit rate is 100%. The morphological variables contributing most to group membership are: (1) percent cystlike microlaminae, (2) microlaminae per mm, (3) gallery height, (4) laminae per mm, and (5) laminar thickness. The statistics confirm that there are three species: H. centrotum, H. microporum, and H. consimile.
Habrostroma centrotum occurs in all five areas. This is unusual because Virginia, New York, and Maine are part of the Eastern Americas Realm, and the arctic islands are part of the Old World Realm. Separation of the realms is based on a high percentage of unique genera in each. A breach in the inter-realm barrier is proposed to have existed across the Canadian Shield during the Lochkovian. The nature of the breach is determined to be a shallow-water filter, allowing the passage of a limited number of taxa.
Non-spicular sponges constitute >8% of the extant sponge biodiversity at the species level, yet their evolutionary history is poorly known due to a sparse fossil record. The genus Vauxia, previously only known from middle Cambrian (Miaolingian, Wuliuan) Lagerstätten, was regarded as the earliest fossil record of non-spicular demosponges. Here we describe the first vauxiid sponge, Vauxia leioia new species, from the early Cambrian Chengjiang Biota (Series 2, Stage 3). This sponge exhibits a double-layered fibrous skeleton: the mesh and fiber thickness of the endosomal layer are irregular while the dermal layer, which directly connects with the endosomal skeleton without intermediate supporting fibers, is regular in both aspects. Measurements using scanning electron microscope and Raman spectroscopy revealed that the endosomal fibers are composed of carbonaceous material, but are tomographically indiscernible from the host rock, while the dermal fibers are preserved as impressions without obvious accumulation of carbonaceous material. Although the original composition of the dermal skeleton is now hard to establish, we cannot rule out that it was siliceous. The morphological characters of V. leioia n. sp. represent an intermediate state between other Vauxia species and the recently established vauxiid genus Angulosuspongia. However, more data are required to reconstruct the phylogenetic relationship among these taxa.
Five genera of anthaspidellid and streptosollenid demosponges are described from the Ordovician Lenoir Limestone near Lenoir City, Loudon County, Tennessee, USA including: Rhopalocoelia regularis Raymond and Okulitch, Rugocoelia loudonensis n. sp., Psarodictyum sp. (Anthaspidellidae), Allosacus pedunculatus n. sp., and Zitelella varians Raymond and Okulitch (Streptosolenidae). These findings confirm the major paleobiogeographic picture for Laurentian sponges (i.e., the differential distribution of sponge faunas along both North American margins), because none of these eastern margin species has been reported from western margin faunas. Only one genus typical of the Great Basin fauna, RugocoeliaJohns, 1994, is reported from Tennessee, but as a new species. Possible explanations are discussed for this differential distribution, mainly related to climatic constraints or sedimentary differences, preventing the free distribution of sponge species between Laurentian continental margins.
Extant medusozoans (phylum Cnidaria) are dominated by forms showing tetraradial symmetry, but stem-group medusozoans of early Cambrian age collectively exhibit tetra-, bi-, penta-, and hexaradial symmetry. Moreover, the developmental and evolutionary relationships between four-fold and other types of radial symmetry in medusozoans remain poorly understood. Here we describe a new hexangulaconulariid, Septuconularia yanjiaheensis new genus new species, from Bed 5 of the Yanjiahe Formation (Cambrian Stage 2) in the Three Gorges area of Hupei Province, China. The laterally compressed, biradially symmetrical periderm of this species possesses 14 gently tapered faces, the most of any hexangulaconulariid described thus far. The faces are bordered by longitudinal ridges and crossed by short, irregularly spaced transverse ribs. Longitudinally, the periderm consists of three regions that probably correspond, respectively, to an embryonic stage, a transient juvenile stage, and a long adult stage. Septuconularia yanjiaheensis may have been derived from six-faced Hexaconularia (Fortunian Stage), which is morphologically intermediate between Septuconularia yanjiaheensis and Arthrochites. Furthermore, conulariids sensu stricto, carinachitids, and hexangulaconulariids may constitute a monophyletic group united by possession of an organic or organophosphatic periderm exhibiting longitudinal (corner) sulci, a facial midline, and offset of transverse ribs along the facial midline.
The Miocene Solemyidae of Chile are revised. The holotype of Solemya antarcticaPhilippi, 1887, originally described as Solenomya, is lost. Due to the lack of information on internal characters, its systematic position is considered as uncertain. A new species, Solemya lucifuga n. sp., is described from the lower Miocene Ranquil Formation of south-central Chile. Its dense radial external ornamentation shows that it is clearly different from S. antarctica. It is currently the only confirmed and described Miocene solemyid bivalve from the Southern Hemisphere.
Nectocaridids are soft-bodied Cambrian organisms that have been controversially interpreted as primitive cephalopods, at odds with the long-held belief that these mollusks evolved from a shell-bearing ancestor. Here, I document a new nectocaridid from the Whetstone Gulf Formation, extending the group's range into the Late Ordovician. Nectocotis rusmithi n. gen. n. sp. possesses a robust internal element that resembles a non-mineralized phragmocone or gladius. Nectocaridids can be accommodated in the cephalopod total group if the earliest cephalopods (1) inherited a non-mineralized shell field from the ancestral mollusk; and (2) internalized this shell field. This evolutionary scenario would overturn the traditional ectocochleate, Nautilus-like reconstruction of the ancestral cephalopod, and indicate a trend towards increased metabolic efficiency through the course of Cambrian–Ordovician evolution.
Oryctocephalid trilobites are seldom abundant and often tectonically deformed, creating problems for robust species delimitation and compromising their utility in biostratigraphic and evolutionary studies. By studying more than 140 specimens recovered from the upper portion of the Combined Metals Member (Pioche Formation, Nevada; Cambrian Stage 4, Series 2), we exploit a rare opportunity to explore how morphological variation among oryctocephalid specimens is partitioned into intraspecific variation versus interspecific disparity. Qualitative and quantitative analyses reveal that two species are represented: Oryctocephalites palmeriSundberg and McCollum, 1997 and Oryctocephalites sp. A, the latter known from a single cranidium stratigraphically below all occurrences of the former. In contrast to the conclusions of a previous study, there is no evidence of cranidial dimorphism in O. palmeri. However, that species exhibits considerable variation in cranidial shape and pygidial spine arrangement and number. Cranidial shape variation within O. palmeri is approximately one-half of the among-species disparity within the genus. Comparison of cranidial shape between noncompacted and compacted samples reveals that compaction causes significant change in mean shape and an increase in shape variation; such changes are interpretable in terms of observed fracture patterns. Nontaphonomic variation is partitioned into ontogenetic and nonallometric components. Those components share similar structure with each other and with interspecific disparity, suggesting that ontogenetic shape change might be an important source of variation available for selection. This highlights the importance of ontogenetic and taphonomic sources of variation with respect to species delimitation, morphospace occupation, and investigation of evolutionary patterns and processes.
Three new species of Cyphaspides are proposed: C. ammari, C. nicoleae, and C. pankowskiorum. These species are based on specimens obtained from Middle Devonian (Eifelian) strata of the Bou Tchrafine Group, near Erfoud, in the Province of Errachidia, southeastern Morocco. The present contribution enhances our knowledge of Cyphaspides by providing details of three new species that are based on well-preserved, complete, and articulated types. The genus Cyphaspides is discussed, and an emended diagnosis is provided. The paleobiogeography, ontogeny, and relationships of the genus are discussed.
Rhenopyrgids are rare, turreted edrioasterid edrioasteroids from the lower Paleozoic with a distinctive and apparently conservative morphology. However, new, well-preserved rhenopyrgid edrioasteroid material from Canada, along with a review of described taxa, has revealed broader structural diversity in the oral surface and enabled a re-evaluation of rhenopyrgid functional morphology and paleoecology.
The floor plates in Rhenopyrgus viviani n. sp., R. coronaeformisRievers, 1961 and, R. flosKlug et al., 2008 are well fused to each other and the interradial oral plate and lack obvious sutures, thereby forming a single compound interradial plate. This differs from other rhenopyrgids where sutures are more apparent. Such fused oral surface construction is only otherwise seen in some derived edrioblastoids and in the cyathocystids, suggesting homoplasy.
Our analysis further suggests that the suboral constriction could contract but the flexible pyrgate zone could not. Thus, specimens apparently lacking a sub-oral constriction should not necessarily be placed in separate genera within the Rhenopyrgidae. It also supports rhenopyrgids as epifaunal mud-stickers with only the bulbous, textured, entire holdfasts (coriaceous sacs) anchored within the substrate rather than as burrow dwellers or encrusters.
Rhenopyrgus viviani n. sp. is described from the Telychian (lower Silurian) Jupiter Formation of Anticosti Island, Québec, Canada and is differentiated by a high degree of morphological variability of pedunculate plates, broader oral plates, and narrower distal ambulacral zones. Specimens lacking or with obscured diagnostic plates from the Ordovician of Montagne Noire, France, and the Ordovician and Silurian of Girvan, Scotland are also described.
The Kalana Lagerstätte of early Aeronian (Llandovery, Silurian) age in central Estonia preserves a diverse shallow marine biota dominated by non-calcified algae. This soft-tissue flora and decalcified and calcified crinoids are preserved in situ, in a lens of microlaminated, dolomitized micrite interbedded in a sequence of dolomitized packstones and wackestones. Although the Lagerstätte is dominated by non-calcified algae, crinoids (together with brachiopods and gastropods) are among the most common organisms that were originally comprised of a carbonate skeleton. Two new crinoids are described from this unit, Kalanacrinus mastikae n. gen. n. sp. (large camerate) and Tartucrinus kalanaensis n. gen. n. sp. (small disparid). Interestingly, these two crinoids display contrasting preservation, with the more common large camerate preserved primarily as a decalcified organic residue, whereas the smaller disparid is preserved primarily in calcite. Preservation was assessed using elemental mapping of C, Ca, S, and Si. Columns have the highest portion of Ca, once living soft tissue is indicated by C, S was dispersed as pyrite or associated with organics, and Si is probably associated with clay minerals in the matrix. This new fauna increases our understanding of the crinoid radiation on Baltica following Late Ordovician extinctions.
Neusticemys neuquina (Fernández and de la Fuente, 1988) is a turtle from the Upper Jurassic of the Neuquén Basin, Patagonia, Argentina. Here we describe in detail a new skull, lower jaw, and a vertebra, utilizing both traditional anatomical description and computed tomography (CT). New diagnostic cranial characters of Neusticemys neuquina are: a round depression on the ventral surface of the basisphenoid, a relatively larger oval foramen nervi trigemini, and reduced and steepened triturating surfaces on both the maxilla and dentary. The new morphological information presented in this study was included in a phylogenetic analysis, the primary result of which was recovery of Neusticemys neuquina within Thalassochelydia. Characters recognized as synapomorphies of this clade include: (1) anterolateral recess of the anterior surface of the quadrate positioned lateral to the processus trochlearis oticum, (2) presence of a fossa on the supraoccipital-opisthotic-exoccipital contact area, (3) foramina anterius caroticus cerebralis located close together but independently perforating the basisphenoid, and (4) the presence of the splenial in the mandible. Two contrasting dispersal scenarios could explain how this species of Thalassochelydia can be found outside of Europe. The presence of Neusticemys neuquina in the Neuquén Basin could be the consequence of an early dispersion event, for which we lack intermediate forms, or it could be the result of a later event once the clade was already established in Europe.
We describe a new extinct spiny rat, Proclinodontomys dondasi n. gen. n. sp. (Rodentia, Caviomorpha, Echimyidae), represented by a noteworthy preserved skull and mandible from the early-middle Pleistocene outcrops at the coastal cliffs of SE Buenos Aires Province (Central Argentina). Phylogenetic analyses allow us to propose that the new species described here and the already known Eurzygomatomys mordax (Winge) represent a new genus closely related to the living Euryzygomatomys spinosus and Clyomys laticeps. The new genus differs from Euryzygomatomys and Clyomys by having much more procumbent upper incisors, a more developed fossa for the M. temporalis, more flared and laterally expanded zygomatic arches, frontal less markedly expanded posteriorly, jugals much deeper anteriorly than posteriorly, with the dorsal border descending more abruptly posteriorly, smaller orbital cavity, and external auditory meatus relatively smaller and slanted upward and backward. Several features of the new species reflect a higher degree of adaptation to semifossorial habits than those of E. spinosus. The origin of the semifossorial ecomorphotype within echimyids may have been triggered by the expansion of relatively open and arid environments that arose near the Miocene-Pliocene boundary. The record of this new echimyid in Central Argentina indicates that during the early-middle Pleistocene, the southern limit of the geographic range of extinct representatives of the Brazilian lineage of semifossorial echimyids extended farther south than that of their living members.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere