Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Calcified cyanobacteria are of considerable research value for reconstructing the ecology of Paleozoic and Mesozoic benthic communities on carbonate platforms due to their ability to produce oxygen and fix nitrogen and CO2. The diversity and abundance of calcified cyanobacteria was initially suggested to have declined in the Middle and Late Ordovician, although more recent work suggests that complex and diverse assemblages persisted throughout the Ordovician. Here, calcified cyanobacteria and associated microfossil flora from the Middle and Late Ordovician of the Ordos Basin, North China Block, are systematically described for the first time based on 1330 thin sections from seven outcrop profiles and four drill cores. In total, there are 18 species belonging to 16 genera, including a new species, Proaulopora ordosia n. sp. Girvanella, Subtifloria, Acuasiphonoria, Xianella, and Oscillatoriaceae gen. indet. are assigned to Osillatoriales of cyanobacteria; Ortonella, Hedstroemia, Cayeuxia, Zonotrichites, Proaulopora, and Phacelophyton are assigned to Nostocales of cyanobacteria; and Garwoodia, Renalcis, Izhella, Rothpletzella, and Wetheredella are assigned to calcified Microproblematica. A literature survey of Ordovician microfloral assemblages shows that cyanobacteria and associated microfossils occur in reef, open platform, lagoon, and tidal facies. Most genera occur on at least two independent blocks, and many have a cosmopolitan distribution in similar sedimentary facies. Our research suggests that calcified cyanobacteria and associated microfossils formed complex ecosystems and played greater ecological roles on carbonate platforms during the late Middle and Late Ordovician than was previously thought.
Bryozoans from the Dapingian (Middle Ordovician) of the Baltic paleobasin remain poorly studied and their taxonomic composition is unclear. In this paper, three bryozoan taxa, a bifoliate cystoporate Planopora volkhovensis n. gen. n. sp., a trepostome Hemiphragma insolitum n. sp., and an esthonioporate Esthoniopora clara Koromyslova, are described from Dapingian deposits of an unusual clayey-calcareous Hecker-type mudmound on the right bank of the Volkhov River in Leningrad Oblast', north-western Russia. Combined X-ray microtomography, scanning electron microscopy, and light microscopy of thin sections were used to characterize their morphology. Analysis of the stratigraphic distribution of early cystoporate bryozoans suggests that Planopora n. gen. is the oldest cystoporate bryozoan with an erect, bifoliate colony. The growth modes of these bryozoans are discussed. The colonies of P. volkhovensis n. gen. n. sp. and E. clara have an attachment structure, a holdfast, at their base, probably indicating their attachment to sponge spicules. The bryozoan H. insolitum n. sp. produced rod-like colonies, formed by overgrowing the problematic tubular fossil Sphenothallus Hall. It can be assumed that sponges with unfused siliceous spicules and individuals of Sphenothallus were numerous on the surface of the mudmound during its formation and provided a suitable substrate for settlement of bryozoan larvae.
Brachiopod shell accumulations are abundant and diverse in the lower Cambrian strata of Yunnan Province, South China, but most commonly they are composed of linguloid and acrotheloid brachiopods. Here, we describe the first record of shell beds with high-density accumulations of microscopic acrotretoid brachiopods (usually <2 mm in width) in the muddy deposits of the Wulongqing Formation (Guanshan Biota, Cambrian Stage 4) in the Wuding area of Yunnan Province. The acrotretoid shell beds from the Wulongqing Formation vary from thin mm-thick pavements to more well-developed beds, several centimeters thick. The occurrence of remarkably rich acrotretoid shell beds indicates that microscopic lingulates began to exert an important role in hardening and paving the soft-substrate seafloor during the early Cambrian evolution of Phanerozoic “mixgrounds.” The new Guanshan material is referred to a new species, Linnarssonia sapushanensis n. sp., which differs from other species of Linnarssonia mainly in having a well-developed internal pedicle tube, as well as a relatively longer dorsal median septum. The occurrence of Linnarssonia sapushanensis n. sp. in the Wulongqing Formation in eastern Yunnan extend the oldest record of the genus on the Yangtze Platform of South China back to at least Cambrian Stage 4.
The lower strata of the Umachiri Formation from the Altiplano of southeast Peru have yielded a brachiopod-dominated assemblage, containing representatives of the brachiopod superfamilies Polytoechioidea, Orthoidea, and Porambonitoidea, as well as subsidiary trilobite and echinoderm remains. Two new polytoechioid genera and species, Enriquetoechia umachiriensis new genus new species and Altiplanotoechia hodgini n. gen. n. sp. Colmenar in Colmenar and Hodgin, 2020, and one new species, Pomatotrema laubacheri n. sp., are described. The presence of Pomatotrema in the Peruvian Altiplano represents the occurrence at highest paleolatitude of this genus, normally restricted to low-latitude successions from Laurentia and South China. Other polytoechioids belonging to Tritoechia (Tritoechia) and Tritoechia (Parvitritoechia) also occur. Identified species of orthoids from the genera Paralenorthis, Mollesella, and Panderina? occur in the Peruvian Cordillera Oriental and in the Argentinian Famatina Range. The only porambonitoid represented is closely related to Rugostrophia latireticulataNeuman, 1976 from New World Island, interpreted as peri-Laurentian. These brachiopod occurrences indicate a strong biogeographic affinity of the Peruvian Altiplano with the Famatina and western Puna regions, suggesting that the brachiopod faunas of the Peruvian Altiplano, Famatina, and western Puna belonged to a well-differentiated biogeographical subprovince during the Early–Middle Ordovician on the margin of southwestern Gondwana. Links with peri-Laurentian and other low-latitude terranes could be explained by island hopping and/or continuous island arcs, which might facilitate brachiopod larvae dispersal from the Peruvian Altiplano to those terranes across the Iapetus Ocean. Brachiopods from the lower part of the Umachiri Formation indicate a Floian–?Dapingian age, becoming the oldest Ordovician fossils of the Peruvian Altiplano.
Strata of the Solvik Formation in the central Oslo Region (upper Hirnantian through most of Aeronian) are very fossiliferous and provide a good record relating to the survival and recovery faunas after the end-Ordovician mass extinctions. The ribbed atrypide fauna is especially rich with 21 species present. Samples from most of these taxa have been sectioned to reveal internal structures for taxonomic study. Of these, 13 species belong to the family Atrypidae, three of which are described in the present paper; Dihelictera engerensis n. sp., Gotatrypa vettrensis n. sp., and Rhinatrypa henningsmoeni n. gen. The family Atrypidae follows a global pattern of recovery with an increase in diversity registered in upper Rhuddanian and further diversification in Aeronian strata. The focus of this paper is the family Atrypinidae, which shows a different pattern. They are common and fairly diverse near the base of the Rhuddanian in deeper waters and rare further up, especially in the Aeronian. One new genus, Bockeliena, and two new species, Plectatrypa rindi and Euroatrypa? sigridi are defined. The relationship between the subfamilies Spirigerininae and Plectatrypinae is clarified through thin sections of material from the Ordovician/Silurian boundary layers. The plectatrypids originated in Baltica through transitional species found in upper Katian to Hirnantian strata leading from the cosmopolitan Eospirigerina to the Plectatrypa lineage with imbricate ribbing and, separately, to Bockeliena and others with lamellose, widely spaced ornamentation. The Oslo Region probably acted as a nexus for survival and spread of brachiopods after the end-Ordovician mass extinction.
A new sinistrally coiled univalved mollusk Catalanispira n. gen. is described with two species; Catalanispira reinwaldti (Öpik, 1930) from the Middle Ordovician Kõgekallas Formation (Darriwilian) of Estonia and Catalanispira plattevillensis n. gen. n. sp. from the Upper Ordovician Platteville Formation (Sandbian) of northern Illinois, USA. Morphological features include a large, low-trochiform shell, a narrow lenticular aperture, a deep funnel-like umbilicus, a falcate inner lip and a large (1.4 mm wide) protoconch. Ornamentation consists of fine commarginal growth lines or ribs but superimposed on a slightly irregular shell surface. Catalanispira n. gen. is placed within the sinistrally coiled order Mimospirida and the family Onychochilidae, and Catalanispirinae n. subfam. is proposed. The large Lower Ordovician (Tremadocian) PelecyogyraEbbestad and Lefebvre, 2015 from Morocco and France is transferred to this new subfamily. The well-preserved initial growth stage of Catalanispira plattevillensis n. gen. n. sp. is cap-shaped, slightly asymmetrical, unusually large, and smooth, and represents either an unusually large embryonic shell (protoconch 1) or a larval shell (protoconch 2). It differs from the smaller protoconch described for the clisospirine Mimospira Koken in Koken and Perner, 1925, which might include a multiwhorled larval shell (protoconch 2). Mimospirids are dominantly Ordovician, and have been classified as untorted mollusks (only distantly related to gastropods), dextral hyperstrophic gastropods, or sinistral orthostrophic gastropods. Sinistral asymmetry already in the embryonic shell and lack of conclusive evidence for coiling direction, e.g., an operculum, could suggest that Catalanispira n. gen. or similar mimosprids were sinistral orthostrophic gastropods. Currently the group is therefore classified as a group of sinistral orthostrophic gastropods, unranked within the Gastropoda.
New atopid trilobites are described from the early Cambrian Cumbres beds and Herrerías shale of northern Huelva Province (Andalusia, Spain) and are dated as middle–late Marianian (Cambrian Series 2, Stage 4). New specimens of Atops calanusRichter and Richter, 1941 are described and the Laurentian species Pseudatops reticulatus (Walcott, 1890b) is recognized for the first time in the Mediterranean subprovince. The associated trilobite assemblage studied herein suggests an age close to the base of Cambrian Stage 4.
A new Saldidae (MCT 6959-I) from the Crato Formation (Lower Cretaceous, late Aptian), Santana Group, Araripe Basin (northeastern Brazil) is described and illustrated. Olindasalda gondwanica n. gen. n. sp. is the first fossil Saldidae recorded from the Gondwanan supercontinent. The new genus can be distinguished from other members of the subfamily Chiloxanthinae by its small (4.49 mm) and oval-elongated body, absence of spots on the corium of the hemelytron, long R vein, and much-reduced first cell of the membrane. Remarks on the geology of the type locality and a comparison of the new genus with other saldids are provided.
Two new families and three new genera and species of Crinoidea from the Icla and Belén formations, Bolivian Devonian, are described. The material is identified as Meperocrinus angelina n. gen. n. sp., from the Icla Formation of the Sub-Andina region, Tuberocrinus lapazensis n. gen. n. sp. and Aenigmaticumcrinus rochacamposi n. gen. n. sp., both from the Belén Formation of the Bolivian Altiplano. Meperocrinus angelina n. gen. n. sp. is an Emperocrinidae, a family described from the Silurian of the United States of America. Tuberocrinus lapazensis n. gen. n. sp. is assigned to a new family of Dimerocrinitacea, the Tuberocrinidae n. fam., which is closely related to Pterinocrinidae that already has representatives in Bolivia (Apurocrinus sucrei McIntosh), Argentina (Pterinocrinus? australis Haude), and Colombia (Bogotacrinus scheibei McIntosh). Aenigmaticumcrinus rochacamposi n. gen. n. sp. is also as assigned to a new family of Dimerocrinitacea, the Aenigmaticumcrinidae n. fam.; a family with very distinctive features. These data demonstrate that the Malvinokaffric crinoid fauna in Bolivia has a mixed origin, with forms that arrived in South America from Europe (Old World Realm) and United States of America (Eastern America Realm) during the late Silurian or earliest Devonian, as well as a local stock, which evolved to highly endemic lineages.
The late Silurian Arceoaster hintei new genus new species (Asteroidea, Echinodermata) is based on a single complete specimen from the lower Hunton Group of southern Oklahoma. Overall ossicular arrangement enables assignment of the new genus to the Paleozoic stem-family Hudsonasteridae; however, Arceoaster n. gen. is homeomorphic with members of the post-Paleozoic crown-group Goniasteridae. Because Arceoaster n. gen. is a hudsonasterid, and because similar morphologic expressions are not known among described taxa from later in the Paleozoic or the early Mesozoic, similarities between Arceoaster n. gen. and later genera are homoplastic, thereby providing an example of iterative evolution within Asteroidea. The Arceoaster n. gen. specimen is associated with a rich and diverse invertebrate fauna typical of its time interval and environmental setting; nothing suggests an unusual habitat. Selective pressures leading to homoplasy are conjectural, although robust construction among extant asteroids has been associated with a defensive life strategy.
A new wood-boring ichnospecies is described from transgressive (lagoonal) deposits of the Lower Cretaceous Sparky Formation (Mannville Group) in west-central Saskatchewan, Canada. Apectoichnus lignummasticans new ichnospecies is a trace fossil that occurs in a thin coal bed and that was emplaced in an in situ xylic substratum (woodground). The ichnofossil is thin, elongate, unbranched, and straight to gently curved with a circular cross section and uniform diameter. Apectoichnus lignummasticans n. isp. is similar in many respects to modern borings in wood that are produced by marine isopods, e.g., Limnoria lignorumRathke, 1799, for feeding and refugia. The recognition of Apectoichnus lignummasticans n. isp. in the rock record aligns with the modern observation that fossilized wood-boring assemblages should display higher ichnofossil diversities than commonly reported. Additionally, the stratigraphic occurrence of Apectoichnus lignummasticans n. isp. in association with other evidence of marine deposition reaffirms that certain wood boring morphologies (i.e., ichnotaxa) are useful as indicators of marine transgressions.
The family †Peipiaosteidae contains the genera †Peipiaosteus, †Stichopterus, †Spherosteus, †Yanosteus, and †Liaosteus, all from Late Jurassic to Early Cretaceous deposits of China, Russia, Kazakhstan, and Mongolia. Although the family has taxonomically expanded since it was first established for †P. paniLiu and Zhou, 1965, the amount of detailed comparative data for many of the taxa involved is lacking. In this paper, we describe the osteology of the monotypic genus †Yanosteus from the Yixian Formation (Early Cretaceous) of China largely on the basis of a newly prepared, well-preserved specimen. †Yanosteus is characterized by a series of infraorbital ossicles (a characteristic of the family), a broad, rounded palatopterygoid, a robust dentary, an extremely small opercle and a subopercle with distinctly long and rounded anterior process and a posteriorly scalloped margin, a broad and weakly forked caudal fin, an elongate dorsal fin with more than 160–178 fin rays (diagnostic for the genus), and a short but well-formed pectoral fin spine. We use the results of this study to discuss the characters of the †Peipiaosteioidei and the diversity of †peipiaosteioids.
The dispersal of Crocodylus from Africa to Europe during the Miocene is not well understood. A small collection of cranial fragments and postcranial elements from the latest Miocene (6.2 Ma) site of Venta del Moro (Valencia, Spain) have previously been referred to Crocodylus cf. C. checchiaiMaccagno, 1947 without accompanying descriptions. Here we describe and figure for the first time the crocodylian remains from Venta del Moro, which represent at least two individuals. Our comparisons indicate that this material clearly does not belong to Diplocynodon or Tomistoma—the only two other crocodylians described so far for the European late Miocene. The material is only tentatively referred to cf. Crocodylus sp. because the apomorphies of this genus are not preserved and a referral to C. checchiai cannot be supported on a morphological basis. However, it is likely that this late Miocene species, originally described from Libya (As Sahabi) and later identified also in Kenya, could have dispersed across the Mediterranean Basin multiple times and colonized the southern areas of Mediterranean Europe, as evidenced by several Crocodylus or Crocodylus-like remains described during the past years.
Five marsupial species are recognized from the Brule Formation at two localities in southwestern North Dakota: Fitterer Ranch and Obritsch Ranch (middle Oligocene; Whitneyan North American Land Mammal Age [NALMA]). The herpetotheriids Herpetotherium fugaxCope, 1873a, Copedelphys superstes new species, and the peradectid Nanodelphys hunti (Cope, 1873b) are represented at both localities. A fourth species is H. sp., cf. H. merriami (Stock and Furlong, 1922), represented by a single specimen from Fitterer Ranch, being limited elsewhere to the later Arikareean NALMA. A fifth species is represented by two isolated lower cheek teeth, interpreted as m1s, from Fitterer Ranch that are unique in lacking a trigonid (only two cusps present) while having a well-developed talonid. These specimens are referred to an indeterminate herpetotheriine species. The new species of Copedelphys is distinct from other species of the genus in that the anterior two lower molars are enlarged relative to the posterior molars. Overall, this new species is more similar in proportions to the latest Eocene (Chadronian) C. titanelix (Matthew, 1903) than the Oligocene (Orellan and Whitneyan) C. stevensoni (Cope, 1873b). This study adds a third and fourth Whitneyan marsupial fauna from the Great Plains region of North America, increases the known diversity of Whitneyan marsupials, and provides further evidence that marsupial diversity during the late Paleogene in North America was relatively stable until the late early Arikareean NALMA.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere