Maciej Kochanowski, Joanna Dąbrowska, Mirosław Różycki, Jacek Karamon, Jacek Sroka, Tomasz Cencek
Journal of Parasitology 106 (5), 572-588, (8 September 2020) https://doi.org/10.1645/19-75
KEYWORDS: allergen, Anisakidae Nematodes, Anisakis, Contracaecum, mass spectrometry, proteomics, Pseudoterranova, Putative Allergen
Anisakis simplex, Pseudoterranova decipiens, and Contracaecum osculatum third-stage larvae (L3) are fish-borne nematodes that can cause human anisakidosis. Although A. simplex is a known source of allergens, knowledge about the allergic potential of P. decipiens and C. osculatum is limited. Therefore, we performed comparative proteomic profiling of A. simplex, P. decipiens, and C. osculatum L3 larvae using liquid chromatography–tandem mass spectrometry. In total, 645, 397, and 261 proteins were detected in A. simplex, P. decipiens, and C. osculatum L3 larvae, respectively. Western blot analysis confirmed the cross-reactivity of anti-A. simplex immunoglobulin (Ig)G antibodies with protein extracts from P. decipiens and C. osculatum L3 larvae. The identified proteins of the Anisakidae proteomes were characterized by label-free quantification and functional analysis, and proteins involved in many essential biological mechanisms, such as parasite survival, were identified. In the proteome of A. simplex 14, the following allergens were identified: Ani s 1, Ani s 2 (2 isomers), Ani s 3 (2 isomers), Ani s 4, Ani s 8, Ani s 9, Ani s 10, Ani s 11-like, Ani s 13, Ani s fructose 1,6-bisphosphatase, Ani s phosphatidylethanolamine-binding protein (PEPB), and Thu a 3.0101. The following 8 allergens were detected in P. decipiens: Ani s 2, Ani s 3 (2 isomers), Ani s 5, Ani s 8, Ani s 9, Ani s PEPB, and Ani s troponin. In C. osculatum 4, the following allergens were identified: Ani s 2, Ani s 5, Ani s 13, and Asc l 3. Furthermore, 28 probable allergens were predicted in A. simplex and P. decipiens, whereas in C. osculatum, 25 possible allergens were identified. Among the putative allergens, heat shock proteins were most frequently detected, followed by paramyosin, peptidyl-prolyl cis-trans isomerase, enolase, and tropomyosin. We provide a new proteomic data set that could be beneficial for the discovery of biomarkers or drug target candidates. Furthermore, our findings showed that in addition to A. simplex, P. decipiens and C. osculatum should also be considered as potential sources of allergens that could lead to IgE-mediated hypersensitivity.