Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
The Asian longhorned tick, Haemaphysalis longicornis, an invasive tick species in the United States, has been found actively host-seeking while infected with several human pathogens. Recent work has recovered large numbers of partially engorged, host-seeking H. longicornis, which together with infection findings raises the question of whether such ticks can reattach to a host and transmit pathogens while taking additional bloodmeals. Here we conducted molecular blood meal analysis in tandem with pathogen screening of partially engorged, host-seeking H. longicornis to identify feeding sources and more inclusively characterize acarological risk. Active, statewide surveillance in Pennsylvania from 2020 to 2021 resulted in the recovery of 22/1,425 (1.5%) partially engorged, host-seeking nymphal and 5/163 (3.1%) female H. longicornis. Pathogen testing of engorged nymphs detected 2 specimens positive for Borrelia burgdorferi sensu lato, 2 for Babesia microti, and 1 co-infected with Bo. burgdorferi s.l. and Ba. microti. No female specimens tested positive for pathogens. Conventional PCR blood meal analysis of H. longicornis nymphs detected avian and mammalian hosts in 3 and 18 specimens, respectively. Mammalian blood was detected in all H. longicornis female specimens. Only 2 H. longicornis nymphs produced viable sequencing results and were determined to have fed on black-crowned night heron, Nycticorax nycticorax. These data are the first to molecularly confirm H. longicornis partial blood meals from vertebrate hosts and Ba. microti infection and co-infection with Bo. burgdorferi s.l. in host-seeking specimens in the United States, and the data help characterize important determinants indirectly affecting vectorial capacity. Repeated blood meals within a life stage by pathogen-infected ticks suggest that an understanding of the vector potential of invasive H. longicornis populations may be incomplete without data on their natural host-seeking behaviors and blood-feeding patterns in nature.
This study identifies gastrointestinal parasites in the feces of Pecari tajacu (caititu) and Sus scrofa domesticus (domestic pig) in southeastern Piauí, Brazil. The region covers 2 protected areas, Serra da Capivara National Park and Serra das Confusões National Park, and surrounding communities. Fecal samples from 64 animals, 42 from domestic swine and 22 from caititu, collected between 1985 and 2013, were analyzed by optical microscopy. Helminths and/or protozoa were found in 64% of the domestic pig samples and 27% of the caititu samples, totaling 18 morphospecies: Nematoda, Spirurida (2 morphospecies), Trichostrongyloidea, Eimeriidae, Aspidodera sp., Bertiella sp., Metastrongylus sp., Trichostrongylus sp., Moniezia sp., Gongylonema sp., Trichuris suis, Spirocerca lupi, Macracanthorhyncus hirudinaceus, Globocephalus urosubulatus, Strongyloides cf ransomi, Balantioides coli, and Eimeria cf scabra. The highest parasite diversity was obtained in the pig samples, totaling 15 morphospecies, compared to only 6 in caititus, with S. cf ransomi, G. urosubulatus, and S. lupi present in both hosts. We discuss the presence of parasites associated with domestic animals around the Protected Areas and potentially zoonotic parasites close to human communities, which raise concerns about the conservation of wildlife, human health, and livestock in the region.
Morphological characteristics and DNA sequencing were used to identify plerocercoids of a Schistocephalus sp. infecting slimy sculpin (Cottus cognatus) from northern New Brunswick and plerocercoids of Ligula intestinalis infecting blacknose dace (Rhinichthys atratulus) in Fundy National Park (FNP, New Brunswick). To our knowledge, no previous publications documented either cestode from New Brunswick, Canada. Blacknose dace represent a new host record for L. intestinalis. Identifications were made based on the presence or absence of segmentation and sequencing partial nicotinamide adenine dinucleotide dehydrogenase subunit 1 (ND1; mitochondrial DNA) and/or partial cytochrome c oxidase subunit 1 (COI; mitochondrial DNA). Plerocercoids from blacknose dace in FNP were identified as Ligula intestinalis based on >99% nucleotide identity with COI for this species in the NCBI GenBank database. Plerocercoids in slimy sculpin from northern New Brunswick were identified as a Schistocephalus sp. based on high nucleotide identity with congenerics in the NCBI GenBank database. The absence of GenBank entries with sufficient high percent identity to our specimens, and potential species hybrids in this genus, prevents species-level identification of Schistocephalus sp. plerocercoids currently. The absence of previous documentation of these cestodes might reflect recent environmental change promoting the transmission of these parasites that can modulate host fish behavior, induce sterility of host fishes, and contribute to epizootics.
SanguinicolaPlehn, 1905 comprises 26 species that collectively infect fishes from 8 orders (Cypriniformes, Characiformes, Siluriformes, Esociformes, Salmoniformes, Labriformes, Centrarchiformes, and Perciformes). Its revision is warranted because several species assigned to the genus could represent new genera, nucleotide sequences are wanting, many species have incomplete descriptions, and types for most species are missing or of poor quality. Herein, we emend Sanguinicola based on morphology and the first nucleotide-based phylogenetic analysis that includes multiple sequences from morphologically identified adult specimens. We describe Sanguinicola plehnae Warren and Bullard n. sp. from the heart of northern pike, Esox lucius Linnaeus, 1758 from Russia; provide supplemental observations of Sanguinicola volgensis (Rašín, 1929) McIntosh, 1934 from the heart of sabrefish (type species), Pelecus cultratus (Linnaeus, 1758) Berg, 1949 from Russia; describe Sanguinicola cf. volgensis from the heart of ide, Leuciscus idus (Linnaeus, 1758) Berg, 1949 from Russia; and describe Pseudosanguinicola occidentalis (Van Cleave and Mueller, 1932) Warren and Bullard n. gen., n. comb. from the heart of walleye, Sander vitreus (Mitchill, 1818) Bailey, Latta, and Smith, 2004 from eastern North America. Sanguinicola plehnae differs from its congeners by having lateral tegumental spines that total 118–122, are small (3% of body width), and protrude 2–3 µm from the tegument (lacking associated conical protrusion) as well as by having a large testis (>40% of body length). Sanguinicola volgensis differs from its congeners by having posteriorly directed lateral tegumental spines encased in a tegumental conical protrusion as well as by having an ovoid egg. Specimens of S. cf. volgensis differ from those of S. volgensis by having a body that is 5–6× longer than wide (vs. 2–3× in S. volgensis) and <90 lateral tegumental spines (vs. >95). Pseudosanguinicola Warren and Bullard n. gen. differs from Sanguinicola by having densely transverse rows of lateral tegumental spines (vs. a single column of large spines). The phylogenetic analysis utilizing the large subunit ribosomal DNA (28S) failed to reject monophyly of Sanguinicola.
Based on previous molecular phylogenetic analyses, Bothriocestus n. gen. is erected to accommodate bothriocephalid tapeworms that have an elongate scolex, a well-developed apical disc, and a narrow neck region, parasitize freshwater fishes in the Holarctic, and were previously placed in the polyphyletic genus Bothriocephalus Rudolphi, 1808 (Cestoda: Bothriocephalidea). Bothriocestus claviceps (Goeze, 1782) n. comb., a parasite of eels (Anguilla spp.) in the Holarctic region, is designated as the type species. Another species of the new genus, Bothriocestus cuspidatus (Cooper, 1917) (syn. Bothriocephalus cuspidatusCooper, 1917) is redescribed from type and voucher specimens, and new material from the type host, the walleye, Sander vitreus (Mitchill, 1818) (Perciformes: Percidae), in Manitoba and Ontario (where the type locality is located) (Canada) and in New York state and Wisconsin. Bothriocestus cuspidatus of S. vitreus is characterized primarily by the possession of a narrow, long strobila (total length up to 18 cm) composed of distinctly craspedote, trapezoidal proglottids, with primary, secondary, and tertiary proglottids differing in size, and by an arrow-shaped (=cuspidatus) scolex that is distinctly broader than the first proglottids, widest near the base in lateral view and gradually becoming broader toward the anterior end in dorsoventral view. A “dwarf” form of B. cuspidatus (total length of 9–27 mm) from Johnny darter, Etheostoma nigrum Rafinesque, 1820, and tessellated darter, Etheostoma olmstedi Storer, 1842 (both Percidae: Etheostominae), is also characterized morphologically in the present paper.
Pheromone communication is central to the life history of insect parasites. Determining how pheromones affect parasite behavior can provide insights into host–parasite interactions and suggest novel avenues for parasite control. Lice infest thousands of bird and mammal species and feed on the host's feathers or blood. Despite the pervasiveness of lice in wild populations and the costs they exact on livestock and poultry industries, little is known about pheromone communication in this diverse group. Here, we test for pheromone communication in the wing lice (Columbicola columbae) of Rock Doves (Columba livia). Wing lice spend the majority of their lives on bird flight feathers where they hide from host preening by inserting their bodies between coarse feather barbs. To feed, wing lice must migrate to bird body regions where they consume the insulating barbs of contour feathers. We first show that wing lice readily form aggregations on flight feathers. Next, using a Y-tube olfactometer, we demonstrate that wing lice use pheromone communication to move toward groups of nearby conspecifics. This pheromone is likely an aggregation pheromone, as wing lice only produce the pheromone when placed on flight feathers. Finally, we found that when forced to choose between groups of male and female lice, male lice move toward male groups and females toward female groups, suggesting the use of multiple pheromones. Ongoing work aims to determine the chemical identity and function of these pheromones.
Leptotrombidium (Acari: Trombiculidae) mites are carriers of Orientia tsutsugamushi, the bacterial pathogen causing scrub typhus in humans. Classification of Leptotrombidium is vital because limited mite species carry O. tsutsugamushi. Generally, Leptotrombidium at the larval stage (approximately 0.2 mm in size) are used for morphological identification. However, morphological identification is often challenging because it requires considerable skills and taxonomic expertise. In this study, we found that the full-length sequences of the mitochondrial cytochrome c oxidase subunit 1 gene varied among the significant Leptotrombidium. On the basis of these, we modified the canonical deoxyribonucleic acid (DNA) barcoding method for animals by redesigning the primer set to be suitable for Leptotrombidium. Polymerase chain reaction with the redesigned primer set drastically increased the detection sensitivity, especially against Leptotrombidium scutellare (approximately 17% increase), one of the significant mites carrying O. tsutsugamushi. Phylogenetic analysis showed that the samples morphologically classified as L. scutellare and Leptotrombidium pallidum were further split into 3 and 2 distinct subclusters respectively. The mean genetic distance (p-distance) between L. scutellare and L. pallidum was 0.2147, whereas the mean distances within each species were 0.052 and 0.044, respectively. Within L. scutellare, the mean genetic distances between the 3 subclusters were 0.1626–0.1732, whereas the distances within each subcluster were 0.003–0.017. Within L. pallidum, the mean genetic distance between the 2 subclusters was 0.1029, whereas the distances within each subcluster were 0.010–0.013. The DNA barcoding uncovered a broad genetic diversity of Leptotrombidium, especially of L. scutellare and L. pallidum, the notable species carrying O. tsutsugamushi. We conclude that the DNA barcoding using our primers enables precise and detailed classification of Leptotrombidium and implies the existence of a subgenotype in Leptotrombidium that had not been found by morphological identification.
While surveying the parasites of birds associated with western Alabama aquaculture ponds, we collected several specimens of Anativermis normdroneni n. gen., n. sp. (Digenea: Cyclocoelidae) from the nasopharyngeal cavity of a Canada goose, Branta canadensis (Linnaeus, 1758) (Anseriformes: Anatidae). These flukes were heat killed and fixed in neutral buffered formalin for morphology or preserved in 95% ethanol for DNA extraction. Anativermis resembles Morishitium (Witenberg, 1928) by having testes that are spheroid with smooth margins and located in the posterior quarter of the body, an anterior testis that is lateral to the midline and abuts the respective cecum, a posterior testis that is medial (testes diagonal) and abuts the cyclocoel, a genital pore that is immediately postpharyngeal, and a vitellarium that is discontinuous posteriorly. The new genus differs from Morishitium and is unique among all other cyclocoelid genera by having the combination of a body that is broadest in the anterior body half, a posterior body end that is more sharply tapered than the anterior body end, an ovary that nearly abuts the posterior testis, a vitellarium that is asymmetrical and distributes from the area immediately posterior to the cecal bifurcation posteriad to approximately the level of the ovary, and uterine loops extending dorsolateral to the ceca and filling the space between the ceca and the respective body margin for nearly the entire body length. The new genus was recovered as a distinct lineage in separate 28S, 18S, and ITS2 phylogenetic analyses. This is the first report of a cyclocoelid infecting the Canada goose and of a cyclocoelid from Alabama.
KEYWORDS: Echinococcus multilocularis, echinococcosis, alveolar echinococcosis, coyotes, Canis latrans, New York state, European haplotype, Zoonotic parasite, public health
Echinococcus multilocularis is a zoonotic cestode that can infect wildlife, domestic animals, and humans. In humans, infection with the larval stage of the parasite causes the disease alveolar echinococcosis, which can be fatal if left untreated. Surveillance for the parasite in New York State occurred during the 2021–2022 coyote (Canis latrans) hunting season. Fecal samples and the gastrointestinal tracts (GIT) from 43 coyote carcasses were collected from hunters and trappers across 8 counties. Fecal samples were screened for E. multilocularis DNA using a multiplex PCR. Three samples tested positive for E. multilocularis DNA. Subsequently, adult cestodes were collected from GIT samples using the sedimentation, filtration, and counting technique. Phylogenetic analysis of DNA sequences from the nad2 and cob genes from individual worms indicated these New York sequences cluster with E. multilocularis sequences from Europe. This is the first report of adult E. multilocularis cestodes in New York State, as well as the first detection of the European haplotype of E. multilocularis in wildlife in the northeastern United States.
Kelly L. Weinersmith, Lauren E. Nadler, Erik Bengston, Andrew V. Turner, Abhinav Birda, Karina Cobian, Jennifer A. Dusto, Siri H. Helland-Riise, Jasmine M. Terhall, Øyvind Øverli, Ryan F. Hechinger
Some parasites manipulate their host's phenotype to enhance predation rates by the next host in the parasite's life cycle. Our understanding of this parasite-increased trophic transmission is often stymied by study-design challenges. A recurring difficulty has been obtaining uninfected hosts with a coevolutionary history with the parasites, and conducting experimental infections that mimic natural processes. In 1996, Lafferty and Morris provided what has become a classic example of parasite-increased trophic transmission; they reported a positive association between the intensity of a brain-infecting trematode (Euhaplorchis californiensis) in naturally infected California killifish (Fundulus parvipinnis) and the frequency of conspicuous behaviors, which was thought to explain the documented 10–30× increase in predation by the final host birds. Here, we address the primary gap in that study by using experimental infections to assess the causality of E. californiensis infection for increased conspicuous behaviors in F. parvipinnis. We hatched and reared uninfected F. parvipinnis from a population co-occurring with E. californiensis, and infected them 1–2 times/week over half their life span with E. californiensis and a small cyathocotylid trematode (SMCY) that targets the host's muscle tissue. At 3 time points throughout the hosts' lives, we quantified several conspicuous behaviors: contorting, darting, scratching, surfacing, and vertical positioning relative to the water's surface. Euhaplorchis californiensis and SMCY infection caused 1.8- and 2.5-fold overall increases in conspicuous behaviors, respectively. Each parasite was also associated with increases in specific conspicuous behaviors, particularly 1.9- and 1.4-fold more darting. These experimental findings help solidify E. californiensis–F. parvipinnis as a classic example of behavioral manipulation. Yet our findings for E. californiensis infection–induced behavioral change were less consistent and strong than those previously documented. We discuss potential explanations for this discrepancy, particularly the idea that behavioral manipulation may be most apparent when fish are actively attacked by predators. Our findings concerning the other studied trematode species, SMCY, highlight that trophically transmitted parasites infecting various host tissues are known to be associated with conspicuous behaviors, reinforcing calls for research examining how communities of trophically transmitted parasites influence host behavior.
An updated checklist of adult tapeworms (Platyhelminthes: Cestoda) that parasitize wild North American amphibians and reptiles is presented: A total of 58 species grouped in 15 genera, 5 families, and 3 orders, are registered; these infect a total of 90 species of reptiles and 88 species of amphibians in the region. An illustrated identification key for the families and genera listed is proposed.
We herein morphologically diagnose the 5 natural groups of fish blood flukes and name them. Species of Chimaerohemecidae Yamaguti, 1971 infect chimeras, sharks, and rays (Chondrichthyes) and have C-shaped lateral tegumental spines and a non-sinusoidal testis or lack spines and have a sinusoidal testis. Species of Acipensericolidae n. fam. infect sturgeons and paddlefish (Acipenseriformes) and have a robust, bowl-shaped, pedunculate anterior sucker, lateral tegumental spines that are spike-like (not C shaped), an inverse U-shaped intestine (anterior ceca absent) with posterior ceca terminating near the excretory bladder, 6 testes (inter-cecal ovoid or oblong, lacking deep lobes; including 1 post-ovarian testis), a Laurer's canal, and a dextral common genital pore. Species of Sanguinicolidae Poche, 1926 infect primarily later-branching freshwater ray-finned fishes (Teleostei) and have a diminutive anterior sucker, a medial esophageal swelling (pouch), short, radial ceca of approximately equal length or short anterior ceca plus an elongate, dendritic posterior cecum, testis with appendix-like lateral lobes, no Laurer's canal, and separate or common genital pores. Species of Elopicolidae n. fam. infect ladyfishes, tarpons, and catadromous eels (Elopomorpha) and have a robust, bowl-shaped, pedunculate anterior sucker, lateral tegumental spines that are spike-like (can be lost in adult), short or indistinct anterior ceca, posterior ceca that terminate at level of the testis(es), a single testis or 2 testes, a Laurer's canal present or absent, and a sinistral common genital pore and atrium. Species of Aporocotylidae Odhner, 1912 primarily infect later-branching marine and estuarine ray-finned fishes (Teleostei) and have a spheroid anterior sucker with concentric rows of circumferential spines or the spheroid anterior sucker is lost in adults or adults have a diminutive anterior sucker, a sinuous esophagus lacking a pouch, an X- or H-shaped intestine having 4 ceca, long anterior ceca (or secondarily lost), smooth posterior ceca that extend posteriad in parallel with respective body margin and terminate near the posterior body end, testis(es) that lack appendix-like lateral lobes, no Laurer's canal, and a sinistral common genital pore or separate genital pores that are sinistral. Our 28S phylogeny recovered the fish blood flukes as monophyletic and each of the morphologically diagnosed families as monophyletic and sister to the remaining blood flukes infecting turtles and homeotherms. Acipensericolidae was recovered sister to the clade comprising Chimaerohemecidae + Sanguinicolidae and Elopicolidae + Aporocotylidae. The branching order and interrelationships of these families remains unsettled perhaps because of low taxon sampling among non-aporocotylids and extinction of intermediate taxa.
A survey of threespine stickleback (Gasterosteus aculeatus L.) and juvenile Chinook salmon (Oncorhynchus tshawytscha (Walbaum)) from the lower Fraser River, British Columbia, Canada and adjacent marine waters was conducted for the presence of myxozoan parasites of the genus Ceratonova Atkinson, Foott, and Bartholomew, 2014 (Bivalvulida, Ceratomyxidae). Quantitative polymerase chain reaction (PCR; small subunit ribosomal RNA gene) combined with conventional PCR and sequencing (ribosomal internal transcribed spacer region 1) detected Ceratonova gasterostea Atkinson, Foott, and Bartholomew, 2014 in 89 of 269 (33.1%) sticklebacks from the Fraser River and in 1 of 51 (2%) from Howe Sound. In contrast, Ceratonova shasta (Atkinson, Foott, and Bartholomew, 2014) was detected in 2 of 26 (7.7%) Chinook salmon from the Fraser River. Reciprocal infections were not detected. Light microscopic examination of the stickleback intestine revealed the presence of an intense infection with large numbers of pseudoplasmodia which interacted with enterocytes through pseudopodia-like projections. Myxospores with characteristic elongate valve cells were visible within mature pseudoplasmodia and free in the intestinal lumen. This is the first report of C. gasterostea in Canada.
Nanoduplicibothrium n. gen. is erected for the subgroup containing the smallest members of the “tetraphyllidean” family Serendipeidae with bothridia fused lengthwise in 2 pairs that lack both a distinct row of posterior loculi and a cephalic peduncle. Two new species in this genus are described. These are Nanoduplicibothrium leanneae n. gen. n. sp. from Rhinoptera bonasus off South Carolina and Nanoduplicibothrium megaphallum n. sp. from Rhinoptera jayakari off Mozambique. Two species currently assigned to Duplicibothrium are transferred to the new genus as Nanoduplicibothrium paulum n. comb and Nanoduplicibothrium jillae n. comb. and the diagnosis of Duplicibothrium is emended so that it aligns with the revised membership of the group. Duplicibothrium bilai n. sp. is also described from R. jayakari off Mozambique. The description of these species provides formal names for 3 species included in previously published molecular phylogenetic work under the provisional names Duplicibothrium n. sp. 2, Duplicibothrium n. sp. 4, and Duplicibothrium n. sp. 5, respectively. Erection of the new genus substantially reduces the number of instances of congeners in the family parasitizing the same host species because in most instances the pairs of species now represent 1 species each in Nanoduplicibothrium and Duplicibothrium. Sequence data for the D1–D3 region of the 28S rDNA gene were generated for Serendip for the first time from an undescribed species from Aetomylaeus asperrimus collected off Panama. This finding also expands the known host associations of the Serendipeidae beyond the Rhinopteridae to include a species of Myliobatidae. A maximum-likelihood phylogenetic analysis of all species of serendipeids for which data for the D1–D3 region of the 28S rDNA gene are available confirms the reciprocal monophyly of Nanoduplicibothrium, Duplicibothrium, and Serendip. The phylogenetic placement of the fourth genus in the family—the monotypic Glyphobothrium—remains to be determined.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere