Our goal was to study the effectiveness of the insecticide imidacloprid as a systemic control agent. First, to evaluate the blood-feeding effect, we fed adult female Phlebotomus papatasi with imidacloprid-treated rabbit blood and monitored blood-feeding success and survival. Second, to evaluate the feed-through effectiveness of this insecticide, we fed laboratory rats and sand rats with insecticide-treated food and evaluated the survival of sand fly larvae feeding on rodents' feces. In the blood-feeding experiment, 89.8% mortality was observed with the higher dose (5 mg/ml) and 81.3% with the lower dose (1 mg/ml). In the larvicide experiments, both sand fly species demonstrated a typical dose-response curve with the strongest lethal effect for the 250 ppm samples. Lutzomyia longipalpis larvae, however, were less sensitive. In all experiments, 1st instar larvae were more sensitive than the older stages. First instar P. papatasi larvae feeding on sand rat feces passed the larvicidal threshold of 90% mortality at doses higher than 50 ppm. In comparison, in older stages 90% mortality was obtained with a dose of only 250 ppm. Overall, results support the feasibility of imidacloprid as a systemic control agent that takes advantage of the tight ecological association between the reservoir host and the sand fly vector.