Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Colour pattern influences behaviour and affects survival of organisms through perception of light reflectance. Spectrophotometric methods used to study colour optimise precision and accuracy of reflectance across wavelengths, while multiband photographs are generally used to assess the complexity of colour patterns. Using standardised photographs of sand lizards (Lacerta agilis), we compare how colours characterised using point measurements (using the photographs, but simulating spectrophotometry) on the skin differ from colours estimated by clustering pixels in the photograph of the lizard's body. By taking photographs in the laboratory and in the field, the experimental design included two 2-way comparisons. We compare point vs. colour clustering characterisation and influence of illumination in the laboratory and in the field. We found that point measurements adequately represented the dominant colour of the lizard. Where colour patterning influenced measurement geometry, image analysis outperformed point measurement with respect to stability between technical replicates on the same animal. The greater colour variation derived from point measurements increased further under controlled laboratory illumination. Both methods revealed lateral colour asymmetry in sand lizards, i.e. that colours subtly differed between left and right flank. We conclude that studies assessing the impact of colour on animal ecology and behaviour should utilise hyperspectral imaging, followed by image analysis that encompasses the whole colour pattern.
Colour traits can be elaborated through sexual selection and have potential to drive reproductive isolation. Male three-spined sticklebacks (Gasterosteus aculeatus) express striking visual signals to attract choosy females during courtship, typically expressed as red carotenoid-based pigmentation on their throat and jaw during the breeding season, along with blue eyes and blue/green flanks. The extent and intensity of red colouration in males have been linked to fitness benefits to females, including body condition, parasite resistance, parental ability and nest defence. In some populations in the Pacific Northwest of North America, male three-spined sticklebacks express melanic nuptial colouration. In these populations, male possess black throats instead of red, and have dark or black bodies. Melanic males are associated with waterbodies that are red-shifted due to the presence of tannins, where the ambient light environment is dominated by long wavelengths. Here we report the first discovery outside North America of melanic populations of threespined sticklebacks on the island of North Uist in the Scottish Hebrides, on the northwest Atlantic coast of Europe. These populations are associated with a hotspot of stickleback morphological diversity and occur in association with red-shifted waterbodies.
Jessica Rendle, Lian Yeap, Bethany Jackson, Kristin Warren, Samantha J. Ward, Rebecca Donaldson, Chris Mayberry, Jennifer Richardson, Rebecca Vaughan-Higgins
Macropod Progressive Periodontal Disease (MPPD), colloquially referred to as “lumpy jaw”, is a commonly observed disease in captive macropods. However, the prevalence of this disease in the wild is largely unknown. A systematic study of MPPD in wild macropods would provide an indication of the endemic presence of this disease in wild populations, and could assist those managing disease in captive populations, by highlighting potential risk factors for disease development. Utilising kangaroos culled as part of a population management program, this study used visual observation and computer tomography (CT) of skulls to investigate the prevalence of MPPD in wild western grey kangaroos (Macropus fuliginosus) from the Perth metropolitan region, Western Australia. The sample suitable for visual and CT analysis comprised 121 specimens, 71 (58.7%) male and 50 (41.3%) female, with the mean age for all 121 specimens being 4.5 years (±2.63 SD). No evidence of MPPD was detected in any of the specimens examined. Overabundance may not be associated with the development of MPPD, as previously considered, and age-related factors should not be eliminated. This results may reflect low susceptibility to MPPD in western grey kangaroos, given low prevalence is reported in this species in captive populations. Further investigation into species-specificity is recommended, and should include samples with soft tissue to improve sensitivity of disease detection. Surveillance of MPPD in wild populations of macropods helps to improve our understanding of the biological significance, development and potential spread of this disease. Notably, this information may assist in the management of MPPD in captive populations, and may have a positive impact on both the welfare and conservation of macropods in captivity.
The relationship between the minimum metabolic requirements (standard metabolic rate, SMR) and energy costs of non-mandatory physiological functions and behaviour is fundamental for understanding species responses to changing environmental conditions. Theory predicts that ectotherms manage their energy budget depending on whether the relationship between SMR and energy available for other tasks is negative (allocation model), neutral (independent model), or positive (performance model). Energy management has received more attention in endotherms than in ectotherms, where metabolic-behavioural relations may be affected by body temperature variation. We examined the predictions of energy management models at four body temperatures in alpine newts, Ichthyosaura alpestris, under laboratory conditions. High SMR reduced the amount of energy dedicated to food digestion and locomotor activity. The maximum metabolic rate for food digestion was positively related to SMR, while its relationship with locomotor activity was inconclusive. Body temperature affected the intercept but not the slope of these relationships. We conclude that (i) newts manage their energy budget according to the allocation model, (ii) energy management is insensitive to body temperature variation, and (iii) determining energy management models using indirect estimates may be misleading. These findings improve our understanding of the eco-evolutionary significance of SMR variation in tailed amphibians and other ectotherms.
There is increasing recognition of the occurrence of non-native species that are invasive and potentially contribute to biodiversity loss. A two-year camera trap survey was undertaken on Mountain Mosor, Croatia to determine the daily and seasonal activity patterns of recently introduced non-native aoudad (Ammotragus lervia). Aoudad were most active in open rocky habitats and least active in forest habitats. The effect of habitat on the recorded number of aoudad was significant, while the effects of month and the interaction month × habitat were not. The results showed a typical bimodal activity pattern of aoudad, with a modest peak in activity between 5:00 and 9:00 a.m., and a second, more pronounced activity peak between 5:00 and 7:00 p.m. Since the native habitat of aoudad is similar to that in the Mediterranean region, the inferred range of daily and seasonal activities show that the species is well adapted to the new habitat.
Skulls, jaws and teeth of wild terrestrial small mammals (Sciuridae, Soricidae, Erinaceidae, Talpidae, Gliridae, Arvicolidae, Muridae) are occasionally affected by anomalies and pathologies. The present study documents a total of 362 anomalies and 122 pathological changes across 20 different species. These are all based on data published in Germany, supplemented by our own records. Cases were classified into 14 different categories, according to bone and dental anomalies, fractures and inclusions, bone proliferation, dental disease and extreme wear of teeth. An additional category to specifically account for bone proliferation of the skull was not needed, but such findings are to be expected. The most frequent finding was abnormal tooth growth, particularly the elongation of the upper incisors. In individual cases, there was evidence that small mammals are able to recover even from serious injuries to the skull.
Our aim was to determine biogeographical patterns in the food habits of golden jackals by first reviewing their dietary patterns at the continental scale and then analysing associations between the food items in their diets and geographical, regional productivity and land-use variables, using multivariate analyses. Our findings indicated that jackals generally consume small mammals as a staple food but shift to consume plant materials or the carcasses of larger mammals when food resources are scarce owing to changes in the regional climate and productivity, as well as anthropogenic habitat modifications. Disruption of natural food resources (specifically small mammals) due to anthropogenic landscape modifications provokes dietary shifts in golden jackals, potentially increasing their reliance on anthropogenic resources. Consequently, conservation of their habitat in combination with waste management to decrease the accessibility to anthropogenic resources is required to resolve human-jackal conflicts.
This review updates the information on the actual status and distribution of freshwater gobies in Bosnia and Herzegovina. The available literature has been critically reviewed to provide more complete and up-to-date information. Consequently four species are proposed for removal from the national checklist, given the lack of any data to support their presence: Knipowitschia panizzae, Pomatoschistus microps, Proterorhinus marmoratus and Zosterisessor ophiocephalus. Therefore, the freshwater gobiid fauna is confirmed to include seven species from six genera. The Adriatic Sea basin (Neretva River catchment) is inhabited by three endemic species: Knipowitschia radovici, Orsinigobius croaticus and Ninnigobius canestrinii, while the Black Sea basin (Danube River catchment) is inhabited by the invasive species: Babka gymnotrachelus, Neogobius fluviatilis, Neogobius melanostomus and Ponticola kessleri. However, due to the possibility of misidentify the finding of B. gymnotrachelus is questionable and needs confirmation. Distribution of both endemic Knipowitschia and Orsinogobius species is restricted to small areas in the lower Neretva River catchment on both sides of the Croatia-Bosnia and Herzegovina border. The vulnerability of these species is discussed, and the IUCN conservation and units meriting conservation attention were identified. The invasive character of other species is highlighted. This review indicates that the knowledge on the Bosnia-Herzegovinian freshwater gobiid fauna is still far from complete, hence this up-to-date checklist can serve as a basis for further ecological and zoogeographical studies. For better species inventory, finer scale distribution surveys are needed, followed by detailed morphological, molecular phylogenetic and ecological studies.
The presence of the parasitic copepod Neoalbionella globosa in the olfactory chamber of a specimen of the catshark Scyliorhinus canicula has been already reported in the literature, but this is the first record from the north-western Mediterranean Sea. Besides confirming this host-parasite association in the Ligurian Sea, the present study aims to describe some effects of the copepod's presence on the olfactory system of S. canicula, thus inferring potential effects of nasal parasites on olfaction. The copepod was accidentally found during a sampling campaign. The copepod, a mature female with well-developed egg sacs, parasitized the right olfactory rosette; the rosette presented visible swelling in some of the olfactory lamellae while, histologically, restricted edema was detectable close to the zone of attachment. The ipsilateral olfactory bulb, which receives the primary olfactory afferences, had a smaller number of cells and smaller neuron density compared to the contralateral bulb and to the average values for non-parasitized specimens of the same size. The results suggest that, although the olfactory rosette does not seem severely damaged, the presence of the parasite could deeply affect the highly efficient water flow within the nasal chamber, potentially causing partial olfactory impairment.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere