Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
In many animals, changes in altitude drive adaptive variation in body size. However, how other phenotypic traits change when faced with different environments has been little studied in ectotherms. In this study, we selected the high Himalaya frog Nanorana parkeri as a model species for investigating the adaptive evolution of phenotypic traits that respond to altitude in both sexes. First, we found that body mass in populations at higher altitudes was lower than at lower altitudes in females, with no difference observed in males. Second, we found significant differences in fresh liver mass, fresh heart mass, and the ratio of liver mass to body mass with increasing altitude, while hindlimb length decreased with altitude in both sexes. Third, snout-urostyle length, hindlimb length, fresh heart mass and the ratio of heart mass to body mass showed significant negative correlations with increasing altitude in both sexes. In contrast, body mass showed a significant correlation with altitude in females but not males. On the other hand, the ratio of liver mass to body mass showed a significant correlation with altitude in males but not in females. Thus, the species displayed sex-specific organ-size variation along elevation gradients, which may trade-off in life history strategies among populations. We speculate that selection favours a larger heart and liver mass to maintain a higher respiratory rate and energy consumption as an adaptation to high-altitude environments.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere