Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Konservat-Lagerstätten provide the most complete snapshots of ancient organisms and communities in the fossil record. In the Mesozoic, these deposits are rarely found in marine facies outside Oceanic Anoxic Event (OAE) intervals, suggesting that OAEs set the stage for exceptional fossil preservation. Although anoxia does not guarantee survival of non-biomineralized tissues or articulated skeletons, other OAE phenomena may promote their conservation. Here, we test this hypothesis with a taphonomic analysis of the Konservat-Lagerstätte in the black shales and siltstones of the Jurassic Fernie Formation at Ya Ha Tinda (Alberta, Canada). This deposit contains crustacean cuticles, coleoid gladii with ink sacs and mantle tissues, and articulated skeletons of fish, crinoids, and ichthyosaurs. The fossils were preserved in the Pliensbachian and Toarcian (Early Jurassic) when euxinic conditions were common in the area, in part, due to the ∼183 Ma Toarcian OAE. Some of the fossils contain carbonaceous material, but the majority consists of apatite minerals, and phosphatic gladii demonstrate that some animals were preserved through secondary phosphate mineralization. Phosphatization generally occurs within phosphate-rich sediment, but oceanic anoxia causes sediment to release phosphorus and prevents animals from colonizing seafloor habitats. Accordingly, we propose that the animals were preserved during brief episodes of bottom water oxia and/or dysoxia, when the environment would have been most favorable to benthic communities and phosphate mineralization. In this setting, phosphatization may have been fueled by phosphate delivery from continental weathering in response to climatic warming, ocean upwelling of eutrophic water, and/or nutrient trapping by anoxia in the basin.
The vertebrate-fossil record in the Karoo Basin has served as the accepted model for how terrestrial ecosystems responded to the end-Permian extinction event. A database of several hundred specimens, placed into generalized stratigraphies, has formed the basis of a step-wise extinction scenario interpreted by other workers as spanning the upper Daptocephalus (=Dicynodon) to Lystrosaurus Assemblage Zones (AZ). Seventy-three percent of specimens used to construct the published model originate from three farms in the Free State: Bethel, Heldenmoed, and Donald 207 (Fairydale). The current contribution empirically tests: (1) the stratigraphic resolution of the vertebrate record on these farms; (2) whether a sharp boundary exists that delimits the vertebrate assemblage zones in these classic localities; and (3) if the Lystrosaurus AZ is of early Triassic age. We have used a multi-disciplinary approach, combining lithostratigraphy, magnetostratigraphy, vertebrate biostratigraphy, and palynology, to test these long-held assumptions.
Previously reported vertebrate-collection sites have been physically placed into a litho- and magnetostratigraphic framework on the Bethel and Heldenmoed farms. The reported assemblage-zone boundary is used as the datum against which the stratigraphic position of vertebrates is compared and a preliminary magnetostratigraphy constructed. We find specimens of the Daptocephalus AZ originate in the Lystrosaurus AZ (as currently defined) and vice versa, and discrepancies between reported and field-checked stratigraphic positions below or above the assemblage-zone boundary often exceed 30 m. Hence, the utility of the data set in defining a sharp or abrupt biozone boundary is questionable. We further demonstrate the presence of a stratigraphically thick reverse polarity magnetozone that encompasses the reported assemblage-zone boundary, implying that these rocks are not correlative with the end-Permian event, which is reported to lie in a normal polarity chron. A latest Permian age is supported by palynological data from the Lystrosaurus AZ on the Donald 207 (Fairydale) farm, with equivalence to Australian (APP602) and Eastern Cape Province assemblages. We conclude that the turnover from the Daptocephalus to Lystrosaurus Assemblage Zones is more protracted than envisioned, it is not coincident with the end-Permian event as recognized in the marine realm, and little evidence exists in support of a three-phased extinction model based on vertebrate assemblages in the Karoo Basin.
Hymenopteran cocoons are complex structures constructed from silk by larvae and exhibit a wide range of morphologies, compositions, and textures. The recognition of the most relevant characters of modern cocoons is important for the accurate identification of trace fossils attributed to wasps, which are included in the ichnogenus Fictovichnus. Characters assessed in this study are length, equatorial diameter, diameters near the extremes, shape, color, texture, surface morphology, and occurrence (isolated or clustered). We mapped these characters onto a hymenopteran phylogeny, revealing that the distribution of most of them has no evident phylogenetic signal. In many cases, there is more than one character state in a single family, whereas others appear distributed among several groups. Ellipsoidal and ovoid cocoons, showing membranous texture are the most basal and common characters. Bilobated, subconical and fusiform shapes, clustering, nipple and pores seem to be autapomorphies for certain groups. Crabronidae, Pompilidae, Scolioidea and Thynnoidea construct hard coriaceous cocoons, which may show distinctive surface morphologies and would have the highest preservation potential in paleosols. Data presented herein show that both Fictovichnus sciuttoi and Fictovichnus aragon were correctly attributed to Crabronidae or Pompilidae, although Scolioidea and Thynnoidea cannot be ruled out because of the shape and coriaceous texture of their cocoons. According to the low phylogenetic signal of Hymenoptera cocoons found herein, it would be impossible to refine the affinities of these ichnospecies to particular taxa. The simple morphology of Fictovichnus gobiensis precludes a definitive attribution, either to wasps or to coleopterans, even after the new data presented herein.
Among fossiliferous marine facies, deposits rich in stalked echinoderms, particularly encrinites, have long been suspected to be susceptible to taphonomic biases because intact calyxes are under-represented or masked by disarticulated skeletal debris. In the middle Mississippian Fort Payne Formation of south-central Kentucky, penecontemporaneous crinoid-rich facies are exposed in close proximity along the shores of Lake Cumberland. Crinoidal packstone buildups preserve a broad preservational spectrum, with articulated crinoid calyxes with arms and columns attached, intact calyxes, holdfasts, and long articulated columns, in a matrix of entirely disarticulated crinoidal fragments. Along a 250 m transect across the flanks and crest of this buildup, identification of 563 specimens of crinoids and blastoids revealed a symmetrical distribution of taxa in which the crest was dominated by disparid and camerate crinoids and the flanks were dominated by camerates. Taphonomic analysis of the same transect showed that intact crinoid calyxes with or without attached arms and column occurred across the entire buildup, but nearly complete specimens with attached arms and column were most common on the western flank and less common on the crest and eastern flank. Taxonomic and taphonomic distributions demonstrate a primary ecologic zonation across the buildup with only localized post-mortem dispersal of crinoids. This is the first demonstration of primary ecologic zonation of a crinoid community preserved within a single lithofacies. Depending on depositional and taphonomic circumstances, crinoids are preserved intact close to their living site; understanding these physical and biological processes provides a significant feedback in reconstructing these ancient depositional environments.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere