Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Field work protocols in the recovery of vertebrate fossils can vary between sites, and also within sites, due to differing researcher goals. Disparate researcher priorities can affect the resulting collections in terms of species richness, size distribution, specimen completeness, taphonomic condition, and aesthetic value. We examined paleoecological data, in the form of bone surface modifications (e.g., abrasion, feeding traces, etc.), from a single site worked by multiple collectors to determine the sensitivity of this type of data to collector bias. We examined 2,368 fossils from the Mygatt-Moore Quarry and divided them into two cohorts: 2016–2019 (bulk collection under a single collector) and pre-2016 (mixed collectors and priorities). Frequencies of modified bone surfaces were then calculated in each cohort among the recovered specimens. However, the specimens within the cohorts were of unequal size, completeness, and amount of preserved surface area, making inferences of modified bone surface frequencies difficult. To correct for unequal morphologies and preservation, we estimated the percentage of altered surface area among specimens by overlaying photos with a 4.0 cm2 digital grid to create a digital set of equal sized fragments. With such a large dataset, we took a random 10% subsample of specimens from each cohort for the grid study. We estimated the sample size needed to accurately reflect the frequency of bone surface modifications by specimen and surface area for each cohort. Results show the recovery of modified bone surfaces between the two cohorts was highly disparate, and potentially sensitive to the effects of collector bias when using specimen-level data. However, frequencies based on estimates of surface area were much more consistent and appeared to equalize data between cohorts and showed little influence of collector bias on data recovery. Thus, the traditional method of calculating frequencies using specimen-level data may create an illusion of bias that is removed when frequencies are calculated from estimated bone surface area. We posit that the digital fragmentation method is more informative when comparing paleoecological traces between datasets and should be applied to fossil assemblages going forward, especially when collection protocols between assemblages are significantly different or unknown.
A steinkern of an endoceratid nautiloid siphuncle contains a Trypanites sozialis boring with a lingulate brachiopod Rowellella sp. shell inside. The steinkern of this endoceratid formed during early lithification of the sediment on the seafloor. The lithified steinkern of this siphuncle was either initially partially exposed to the seawater or was exhumed and stayed exposed on the seafloor, where it was colonized by boring organisms. This bioerosion resulted in numerous Trypanites borings in the siphuncle. After the death or exit of the Trypanites trace maker, a vacant boring was colonized by a small lingulate nestler Rowellella sp. This lingulate was likely preadapted to life in hard substrate borings when it first found its way into borings in living substrates in the Late Ordovician. The increased availability of hard substrate borings, combined with the increased predation pressure due to the GOBE, enhanced the colonization of hard substrate borings by lingulate brachiopods.
Demineralization assays, utilizing weak acids to isolate organics from biomineralized tissues, have recently been applied with increasing frequency to explore soft tissue preservation in fossils, revealing frequent retention of cells and other pliable microstructures in fossil bones. However, factors controlling long-term preservation of such labile structures remain mysterious. To address this, we compiled a database of bone demineralization results from 29 studies, then conducted a statistical meta-analysis of these data to evaluate the importance of specimen age, taxonomy, entombing lithology, and bone tissue type on microstructure recovery. Our database encompasses results from 137 bones from 44 formations spanning the Permian to the Holocene. Osteocytes, blood vessels, and fibrous/proteinaceous matrix each exhibit bimodal recovery patterns in which most fossil bones either yield many or none of these microstructures. Though their relative abundances in any given fossil bone are extremely variable, statistically significant Fisher's Exact tests found that if a bone yields one of these types of microstructures in abundance then the others are usually also abundant. None of the variables examined significantly influence osteocyte recovery, but Kruskal-Wallis and subsequent pairwise Mann-Whitney tests revealed that bones collected from unconsolidated sediments, of Paleocene age, and/or deriving from birds, amphibians, marine reptiles, or crocodylians often yield few or no vessels and fibrous matrix. Although these findings hint at possible controls on cellular and soft tissue preservation in fossil bones, they should be viewed cautiously as they are demonstrably biased by uneven sampling. For example, many of the apparent trends are substantially controlled by overrepresentation of data from nonavian dinosaur specimens from Cretaceous fluviolacustrine deposits. Future demineralization assays should therefore focus on non-mammalian specimens from the Cenozoic and Jurassic-and-older nondinosaurian specimens, especially those preserved in less-common depositional environments (e.g., eolian settings).
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere