Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Taphonomic indicators are often used to assess time-since-death of skeletal remains. These indicators frequently have limited accuracy, resulting in the reliance of other methodologies to age remains. Arctica islandica, commonly known as the ocean quahog, is a relatively widespread bivalve in the North Atlantic, with an extended lifespan that often exceeds two hundred years; hence, their shells are often studied to evaluate climate change over time. This report evaluates taphonomic age using 117 A. islandica shells collected from the Mid-Atlantic Bight offshore of the Delmarva Peninsula with radiocarbon dates extending from 60–4,400 cal years BP. These shells had varying degrees of taphonomic alteration produced by discoloration and degradation of periostracum. To determine if a relationship exists between taphonomic condition and time-since-death, radiocarbon ages were compared with the amount of remaining periostracum and type of discoloration. Old shells (individuals that died long ago) were discolored orange with no periostracum while younger shells (individuals that died more recently) had their original color, with some periostracum. Both the disappearance of periostracum and appearance of discoloration followed a logistic process, with 50% of shells devoid of periostracum and 50% discolored in about 1,000 years. The logistic form of long-term taphonomic processes degrading shell condition is first reported here, as are the longest time series for taphonomic processes in death assemblages within the Holocene record. This relationship can be utilized for triage when deciding what shells to age from time-averaged assemblages, permitting more efficient application of expensive methods of aging such as radiocarbon dating.
Molluscan death assemblages occurring on present-day beaches frequently consist of secondary-colored shells, with yellow to brown and gray to black colors. It is hypothesized that this secondary coloration can be related to postmortem age and to conditions in the taphonomically active zone, altering shells to black and gray tones in reducing conditions, and then becoming yellowish or brownish in oxidizing settings. In this study, we assessed whether the variability in the degree of shell discoloration of two species of the infaunal bivalve Mactra collected in beach death assemblages from a temperate siliciclastic beach in Uruguay is a function of postmortem age, and whether this variability in discoloration can be linked to differences in their elemental composition, microstructure, and provenance. Although we did not detect any differences in mineralogy or elemental composition among shells differing in discoloration, we show that modern (younger than a century) beach shells are not secondary-colored, but have remained white, but some white shells are also old (millennial). In contrast, yellow and gray shells are consistently older than 1,000 years, indicating that this degree of discoloration requires millennial residence times in the taphonomically active zone and suggesting that discoloration can be used as an indicator of time averaging. Discolored shells are derived from subtidal death assemblages.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere