Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Deeper knowledge about how species and communities respond to climate change and environmental gradients should be supported by evidence from the past, especially as modern responses are influenced by anthropogenic pressures, including human population growth, habitat destruction and fragmentation, and intensifying land use. There have been great advances in modeling species' geographic distributions over shallow time, where consideration of evolutionary change is likely less important due to shorter time for evolution and speciation to occur. Over these shallow time periods, we have more resources for paleoclimate interpretation across large geographic landscapes. We can also gain insight into species and community changes by studying deep records of temporal changes. However, modeling species geographic distributions in deep time remains challenging, because for many species there is sparse coverage of spatial and temporal occurrences and there are fewer paleoclimate general circulation models (GCMs) to help interpret the geographic distribution of climate availability. In addition, at deeper time periods, it is essential to consider evolutionary change within lineages of species. I will discuss a framework that integrates evolutionary information in the form of phylogenetic relatedness from clades of extant closely related species, where and when there are associated fossil occurrences, and the geographic distribution of paleoclimate in deep time to infer species past geographic response to climate change and to estimate where and when there were hotspots of ancient diversification. More work is needed to better understand the evolution of physiological tolerances and how physiological tolerances relate to the climate space in which species occur.
Echinoderms make up a substantial component of Ordovician marine invertebrates, yet their speciation and dispersal history as inferred within a rigorous phylogenetic and statistical framework is lacking. We use biogeographic stochastic mapping (BSM; implemented in the R package BioGeoBEARS) to infer ancestral area relationships and the number and type of dispersal events through the Ordovician for diploporan blastozoans and related species. The BSM analysis was divided into three time slices to analyze how dispersal paths changed before and during the great Ordovician biodiversification event (GOBE) and within the Late Ordovician mass extinction intervals. The best-fit biogeographic model incorporated jump dispersal, indicating this was an important speciation strategy. Reconstructed areas within the phylogeny indicate the first diploporan blastozoans likely originated within Baltica or Gondwana. Dispersal, jump dispersal, and sympatry dominated the BSM inference through the Ordovician, while dispersal paths varied in time. Long-distance dispersal events in the Early Ordovician indicate distance was not a significant predictor of dispersal, whereas increased dispersal events between Baltica and Laurentia are apparent during the GOBE, indicating these areas were important to blastozoan speciation. During the Late Ordovician, there is an increase in dispersal events among all paleocontinents. The drivers of dispersal are attributed to oceanic and epicontinental currents. Speciation events plotted against geochemical data indicate that blastozoans may not have responded to climate cooling events and other geochemical perturbations, but additional data will continue to shed light on the drivers of early Paleozoic blastozoan speciation and dispersal patterns.
Understanding the distribution of taxa in space and time is key to understanding diversity dynamics. The fossil record provides an avenue to assess these patterns on vast timescales and through major global changes. The Eublastoidea were a conservatively plated Paleozoic echinoderm clade that range from the middle Silurian to the end-Permian. The geographic distribution of the eublastoids, as a whole, has been qualitatively assessed but has historically lacked a quantitative analysis. This is the first examination of the Eublastoidea using probabilistic methods within the R package BioGeoBEARS to assess macroevolutionary trends. Results provide an updated understanding of eublastoid diversity with new peaks and troughs in diversity through their evolutionary history. Lithology is examined in an evolutionary framework and does not have clear evolutionary trends, and there is much work to be done regarding environmental preferences. Biogeographic patterns do not recover precise group origins but do support the previous work that outlines Eublastoidea as a Laurentian clade. Sympatric speciation events dominant the clade's history but are likely exaggerated due to the highly combined areas. Vicariance events are rare and restricted to the Silurian and Devonian, and dispersal events are more common throughout the evolutionary history. Pathways allowing for lineage migrations are noted between southern Laurussia and China in the Devonian and Carboniferous and southern Laurussia and eastern Gondwana in the Carboniferous. Future work will include the addition of more non-Laurentian species into the estimated phylogeny to better estimate these global patterns.
Rates of speciation and extinction are often linked to many ecological factors, traits (emergent and nonemergent) such as environmental tolerance, body size, feeding type, and geographic range. Marine gastropods in particular have been used to examine the role of larval dispersal in speciation. However, relatively few studies have been conducted placing larval modes in species-level phylogenetic context. Those that have, have not incorporated fossil data, while landmark macroevolutionary studies on fossil clades have not considered both phylogenetic context and net speciation (speciation–extinction) rates. This study utilizes Eocene volutid Volutospina species from the U.S. Gulf Coastal Plain and the Hampshire Basin, U.K., to explore the relationships among larval mode, geographic range, and duration. Based on the phylogeny of these Volutospina, we calculated speciation and extinction rates in order to compare the macroevolutionary effects of larval mode. Species with planktotrophic larvae had a median duration of 9.7 Myr, which compared significantly to 4.7 Myr for those with non-planktotrophic larvae. Larval mode did not significantly factor into geographic-range size, but U.S. and U.K. species do differ, indicating a locality-specific component to maximum geographic-range size. Non-planktotrophs (NPTs)were absent among the Volutospina species during the Paleocene–early Eocene. The relative proportions of NPTs increased in the early middle Eocene, and the late Eocene was characterized by disappearance of planktotrophs (PTs). The pattern of observed lineage diversity shows an increasing preponderance of NPTs; however, this is clearly driven by a dramatic extinction of PTs, rather than higher NPT speciation rates during the late Eocene. This study adds nuance to paleontology's understanding of the macroevolutionary consequences of larval mode.
Identifying correlates of extinction risk is important for understanding the underlying mechanisms driving differential rates of extinction and variability in the temporal durations of taxa. Increasingly, it is recognized that the effects of multiple, potentially interacting variables and phylogenetic relationships should be incorporated when studying extinction selectivity to account for covariation of traits and shared evolutionary history. Here, I explore a variety of biological and ecological controls on genus longevity in the global fossil record of diplobathrid crinoids by analyzing the combined effects of species richness, habitat preference, body size, filtration fan density, and food size selectivity. I employ a suite of taxic and phylogenetic approaches to (1) quantitatively compare and rank the relative effects of multiple factors on taxonomic longevity and (2) determine how phylogenetic comparative approaches alter interpretations of extinction selectivity.
I find controls on diplobathrid genus duration are hierarchically structured, where species richness is the primary predictor of duration, habitat is the secondary predictor, and combinations of ecological and biological traits are tertiary controls. Ecology plays an important but complex role in the generation of crinoid macroevolutionary patterns. Notably, tolerance of environmental heterogeneity promotes increased genus duration across diplobathrid crinoids, and the effects of traits related to feeding ecology vary depending on habitat lithology. Finally, I find accounting for phylogeny does not consistently decrease the significance of correlations between traits and genus duration, as is commonly expected. Instead, the strength of relationships between traits and duration may increase, decrease, or remain statistically similar, and both the magnitude and direction of these shifts are generally unpredictable. However, traits with strong correlations and/or moderately large effect sizes (Cohen's f2 > 0.15) under taxic approaches tend to remain qualitatively unchanged under phylogenetic approaches.
Eurypterids are generally considered to comprise a mixture of active nektonic to nektobenthic predators and benthic scavenger-predators exhibiting a mode of life similar to modern horseshoe crabs. However, two groups of benthic stylonurine eurypterids, the Stylonuroidea and Mycteropoidea, independently evolved modifications to the armature of their anterior appendages that have been considered adaptations toward a sweep-feeding life habit, and it has been suggested the evolution toward sweep-feeding may have permitted stylonurines to capture smaller prey species and may have been critical for the survival of mycteropoids during the Late Devonian mass extinction. There is a linear correlation between the average spacing of feeding structures and prey sizes among extant suspension feeders. Here, we extrapolate this relationship to sweep-feeding eurypterids in order to estimate the range of prey sizes that they could capture and examine prey size in a phylogenetic context to determine what role prey size played in determining survivorship during the Late Devonian. The mycteropoid Cyrtoctenus was the most specialized sweep-feeder, with comblike appendage armature capable of capturing mesoplankton out of suspension, while the majority of stylonurines possess armature corresponding to a prey size range of 1.6–52 mm, suggesting they were suited for capturing small benthic macroinvertebrates such as crustaceans, mollusks, and wormlike organisms. There is no clear phylogenetic signal to prey size distribution and no evolutionary trend toward decreasing prey sizes among Stylonurina. Rather than prey size, species survivorship during the Late Devonian was likely mediated by geographic distribution and ability to capitalize on the expanding freshwater benthos.
A fundamental question in paleobiology is whether ecology is correlated with evolutionary history. By combining time-calibrated phylogenetic trees with genus occurrence data through time, we can understand how environmental preferences are distributed on a tree and evaluate support for models of ecological similarity. Exploring parameters that lend support to each evolutionary model will help address questions that lie at the nexus of the evolutionary and ecological sciences. We calculated ecological difference and phylogenetic distance between species pairs for 83 taxa used in recent phylogenetic revisions of the brachiopod order Strophomenida. Ecological difference was calculated as the pairwise distance along gradients of water depth, carbonate, and latitudinal affinity. Phylogenetic distance was calculated as the pairwise branch length between tips of the tree. Our results show no relationship between ecological affinity and phylogeny. Instead results suggest an ecological burst during the initial radiation of the clade. This pattern likely reflects scaling at the largest macroevolutionary and macroecological scales preserved in the fossil record. Hierarchical scaling of ecological and evolutionary processes is complex, but phylogenetic paleoecology is an avenue for better evaluating these questions.
Understanding the mechanisms that prevent or promote the coexistence of taxa at local scales is critical to understanding how biodiversity is maintained. Competitive exclusion and environmental filtering are two processes thought to limit which taxa become established in a community. However, determining the relative importance of the two processes is a complex task, especially when the critical initial stages of colonization cannot be directly observed. Here, we explore the use of phylogenetic community structure for identifying filtering mechanisms in a fossil community. We integrated a time-calibrated molecular phylogeny of bivalve genera with a spatial dataset of late Cenozoic bivalves from the Pacific coast of North America to characterize how the community that was present in the semirestricted San Joaquin Basin (SJB) embayment of present-day California was phylogenetically structured. We employed phylogenetic distance-based metrics across six time bins spanning 27–2.5 Ma and found no evidence of significant clustering or evenness in the SJB community when compared with communities randomly assembled from the regional source pool. Additionally, we found that new colonizers into the SJB were not significantly more or less closely related to native taxa than expected by chance. These findings suggest that neither competitive exclusion nor environmental filtering were overwhelmingly influential factors shaping the composition of the SJB community over time. We further discuss interpretations of these patterns in light of current understandings in community phylogenetics and reiterate the critical role historical perspectives play in how community assembly rules are assessed.
Principal component analysis has been used to test for similarities in ecology and life habit between modern and fossil birds; however, the two main portions of the hind limb—the foot and the long bone elements—have not been examined separately. We examine the potential links between morphology, ecology, and phylogeny through a synthesis of phylogenetic paleoecological methods and morphospace analysis. Both hind limb morphologies and species' ecologies exhibit extreme phylogenetic clumping, although these patterns are at least partially explainable by a Brownian motion style of evolution. Some morphologies are strongly correlated with particular ecologies, while some ecologies are occupied by a variety of morphologies. Within the morphospace analyses, the length of the hallux (toe I) is the most defining characteristic of the entire hind limb. The foot and hind limb are represented on different axes when all measurements are considered in an analysis, suggesting that these structures undergo morphological change separately from each other. Early birds tend to cluster together, representing an unspecialized basal foot morphotype and a hind limb reliant on hip-driven, not knee-driven, locomotion. Direct links between morphology, ecology, and phylogeny are unclear and complicated and may be biased due to sample size (∼60 species). This study should be treated as a preliminary analysis that further studies, especially those examining the vast diversity of modern birds, can build upon.
We use scanning electron microscopy imaging to examine the shell microstructure of fossil and living species in five families of caenogastropods (Strombidae, Volutidae, Olividae, Pseudolividae, and Ancillariidae) to determine whether parallel or convergent evolution is responsible for the development of a unique caenogastropod trait, the extreme parietal callus (EPC). The EPC is defined as a substantial thickening of both the spire callus and the callus on the ventral shell surface such that it covers 50% or more of the surface. Caenogastropods as a whole construct the EPC convergently, using a variety of low-density, poorly organized microstructures that are otherwise uncommon in caenogastropod non-callus shell construction. Within clades, however, we see evidence for parallelism in decreased regulation in both the shell and callus microstructure. Low-density and poorly ordered microstructure—such as used for the EPC—uses less organic scaffolding and is less energetically expensive than normal shell microstructure. This suggests the EPC functions to rapidly and inexpensively increase shell thickness and overall body size. Tests of functional ecology suggest that the EPC might function both to defend against crushing predation through increased body size and dissipation of forces while aiding in shell orientation of highly mobile gastropods. These interpretations hinge on the current phylogenetic placement of caenogastropod families, emphasizing the essential contribution of phylogeny when interpreting homoplasy.
The occupation of new environments by evolutionary lineages is frequently associated with morphological changes. This covariation of ecotype and phenotype is expected due to the process of natural selection, whereby environmental pressures lead to the proliferation of morphological variants that are a better fit for the prevailing abiotic conditions. One primary mechanism by which phenotypic variants are known to arise is through changes in the timing or duration of organismal development resulting in alterations to adult morphology, a process known as heterochrony. While numerous studies have demonstrated heterochronic trends in association with environmental gradients, few have done so within a phylogenetic context. Understanding species interrelationships is necessary to determine whether morphological change is due to heterochronic processes; however, research is hampered by the lack of a quantitative metric with which to assess the degree of heterochronic traits expressed within and among species. Here I present a new metric for quantifying heterochronic change, expressed as a heterochronic weighting, and apply it to xiphosuran chelicerates within a phylogenetic context to reveal concerted independent heterochronic trends. These trends correlate with shifts in environmental occupation from marine to nonmarine habitats, resulting in a macroevolutionary ratchet. Critically, the distribution of heterochronic weightings among species shows evidence of being influenced by both historical, phylogenetic processes and external ecological pressures. Heterochronic weighting proves to be an effective method to quantify heterochronic trends within a phylogenetic framework and is readily applicable to any group of organisms that have well-defined morphological characteristics, ontogenetic information, and resolved internal relationships.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere