Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Kim, J-H., Moon, Y. R., Kim, J-S., Oh, M-H., Lee, J-W. and Chung, B. Y. Transcriptomic Profile of Arabidopsis Rosette Leaves during the Reproductive Stage after Exposure to Ionizing Radiation. Radiat. Res. 168, 267–280 (2007).
We attempted to obtain a transcriptomic profile of ionizing radiation-responsive genes in Arabidopsis plants using Affymetrix ATH1 whole-genome microarrays. The Arabidopsis plants were irradiated with 200 Gy γ rays at the early reproduction stage, 33 days after sowing. Rosette leaves were harvested during the postirradiation period from 36 to 49 days after sowing and used for the microarray analysis. The most remarkable changes in the genome-wide expression were observed at 42 days after sowing (9 days after the irradiation). We identified 2165 genes as γ-ray inducible and 1735 genes as γ-ray repressible. These numbers of affected genes were almost two to seven times higher than those at other times. In a comparison of the control and irradiated groups, we also identified 354 differentially expressed genes as significant by applying Welch's t test and fold change analysis. The gene ontology analysis showed that radiation up-regulated defense/ stress responses but down-regulated rhythm/growth responses. Specific expression patterns of 10 genes for antioxidant enzymes, photosynthesis or chlorophyll synthesis after irradiation were also obtained using real-time quantitative PCR analysis. We discuss physiological and genetic alterations in the antioxidative defense system, photosynthesis and chlorophyll metabolism after irradiation at the reproductive stage.
Vens, C., Hofland, I. and Begg, A. C. Involvement of DNA Polymerase Beta in Repair of Ionizing Radiation Damage as Measured by In Vitro Plasmid Assays. Radiat. Res. 168, 281– 291 (2007).
Characteristic of damage introduced in DNA by ionizing radiation is the induction of a wide range of lesions. Single-strand breaks (SSBs) and base damages outnumber double-strand breaks (DSBs). If unrepaired, these lesions can lead to DSBs and increased mutagenesis. XRCC1 and DNA polymerase beta (polβ) are thought to be critical elements in the repair of these SSBs and base damages. XRCC1-deficient cells display a radiosensitive phenotype, while proliferating polβ-deficient cells are not more radiosensitive. We have recently shown that cells deficient in polβ display increased radiosensitivity when confluent. In addition, cells expressing a dominant negative to polβ have been found to be radiosensitized. Here we show that repair of radiation-induced lesions is inhibited in extracts with altered polβ or XRCC1 status, as measured by an in vitro repair assay employing irradiated plasmid DNA. Extracts from XRCC1-deficient cells showed a dramatically reduced capacity to repair ionizing radiation-induced DNA damage. Extracts deficient in polβ or containing a dominant negative to polβ also showed reduced repair of radiation-induced SSBs. Irradiated repaired plasmid DNA showed increased incorporation of radioactive nucleotides, indicating use of an alternative long-patch repair pathway. These data show a deficiency in repair of ionizing radiation damage in extracts from cells deficient or altered in polβ activity, implying that increased radiosensitivity resulted from radiation damage repair deficiencies.
Yang, H., Anzenberg, V. and Held, K. D. The Time Dependence of Bystander Responses Induced by Iron-Ion Radiation in Normal Human Skin Fibroblasts. Radiat. Res. 168, 292–298 (2007).
Although bystander effects have been shown for some high-LET radiations, few studies have been done on bystander effects induced by heavy-ion radiation. In this study, using a Transwell insert co-culture system, we have demonstrated that irradiation with 1 GeV/nucleon iron ions can induce medium-mediated bystander effects in normal AG01522 human fibroblasts. When irradiated and unirradiated bystander cells were combined in shared medium immediately after irradiation, a two- to threefold increase in the percentage of bystander cells with γ-H2AX foci occurred as early as 1 h after irradiation and lasted at least 24 h. There was a twofold increase in the formation of micronuclei in bystander cells when they were co-cultured with irradiated cells immediately or 1 or 3 h after irradiation, but there was no bystander effect when the cells were co-cultured 6 h or later after irradiation. In addition, bystander micronucleus formation was observed even when the bystander cells were co-cultured with irradiated cells for only 1 h. This indicates that the crucial signaling to bystander cells from irradiated cells occurs shortly after irradiation. Moreover, both γ-H2AX focus formation and micronucleus formation in bystander cells were inhibited by the ROS scavengers SOD or catalase or the NO scavenger PTIO. This suggests that ROS and NO play important roles in the initiation of bystander effects. The results with iron ions were similar to those with X rays, suggesting that the bystander responses in this system are independent of LET.
Zhou, X., Chen, B., Hoopes, P. J., Hasan, T. and Pogue, B. W. Peptide-Induced Inflammatory Increase in Vascular Permeability Improves Photosensitizer Delivery and Intersubject Photodynamic Treatment Efficacy. Radiat. Res. 168, 299– 307 (2007).
Photodynamic therapy (PDT) treatment can exhibit high intersubject variability due to the inherent differences in drug delivery within the tissue to be treated. In this study, the increased perfusion of the lipid-associated photosensitizer verteporfin was studied using substance P, a peptide known to increase vascular permeability. The transvascular permeability coefficient was quantified before and after administration of substance P, and the mean value increased from 0.026 to 0.043 μm/s with the induced inflammation. Correspondingly, there was a 40–50% increase in uptake of verteporfin in the tumor parenchyma in tumors injected with substance P compared to those without. This increased drug uptake resulted in a modest increase in tumor doubling time from 4 days with regular PDT to 6.2 days with substance P and PDT. There was also a significant reduction in the interindividual variability in with substance P plus PDT from 64% to 13%. The resulting treatment was therefore more effective and there was less variability in dose between subjects.
Vikram, D. S., Bratasz, A., Ahmad, R. and Kuppusamy, P. A Comparative Evaluation of EPR and OxyLite Oximetry Using a Random Sampling of pO2 in a Murine Tumor. Radiat. Res. 168, 308–315 (2007).
Methods currently available for the measurement of oxygen concentrations (oximetry) in viable tissues differ widely from each other in their methodological basis and applicability. The goal of this study was to compare two novel methods, particulate-based electron paramagnetic resonance (EPR) and OxyLite oximetry, in an experimental tumor model. EPR oximetry uses implantable paramagnetic particulates, whereas OxyLite uses fluorescent probes affixed on a fiber-optic cable. C3H mice were transplanted with radiation-induced fibrosarcoma (RIF-1) tumors in their hind limbs. Lithium phthalocyanine (LiPc) microcrystals were used as EPR probes. The pO2 measurements were taken from random locations at a depth of ∼3 mm within the tumor either immediately or 48 h after implantation of LiPc. Both methods revealed significant hypoxia in the tumor. However, there were striking differences between the EPR and OxyLite readings. The differences were attributed to the volume of tissue under examination and the effect of needle invasion at the site of measurement. This study recognizes the unique benefits of EPR oximetry in terms of robustness, repeatability and minimal invasiveness.
Oberto, G., Rolfo, K., Yu, P., Carbonatto, M., Peano, S., Kuster, N., Ebert, S. and Tofani, S. Carcinogenicity Study of 217 Hz Pulsed 900 MHz Electromagnetic Fields in Pim1 Transgenic Mice. Radiat. Res. 168, 316–326 (2007).
In an 18-month carcinogenicity study, Pim1 transgenic mice were exposed to pulsed 900 MHz (pulse width: 0.577 ms; pulse repetition rate: 217 Hz) radiofrequency (RF) radiation at a whole-body specific absorption rate (SAR) of 0.5, 1.4 or 4.0 W/kg [uncertainty (k = 2): 2.6 dB; lifetime variation (k = 1): 1.2 dB]. A total of 500 mice, 50 per sex per group, were exposed, sham-exposed or used as cage controls. The experiment was an extension of a previously published study in female Pim1 transgenic mice conducted by Repacholi et al. (Radiat. Res. 147, 631–640, 1997) that reported a significant increase in lymphomas after exposure to the same 900 MHz RF signal. Animals were exposed for 1 h/day, 7 days/week in plastic tubes similar to those used in inhalation studies to obtain well-defined uniform exposure. The study was conducted blind. The highest exposure level (4 W/kg) used in this study resulted in organ-averaged SARs that are above the peak spatial SAR limits allowed by the ICNIRP (International Commission on Non-ionizing Radiation Protection) standard for environmental exposures. The whole-body average was about three times greater than the highest average SAR reported in the earlier study by Repacholi et al. The results of this study do not suggest any effect of 217 Hz-pulsed RF-radiation exposure (pulse width: 0.577 ms) on the incidence of tumors at any site, and thus the findings of Repacholi et al. were not confirmed. Overall, the study shows no effect of RF radiation under the conditions used on the incidence of any neoplastic or non-neoplastic lesion, and thus the study does not provide evidence that RF radiation possesses carcinogenic potential.
Priest, N. D. Comparative Biokinetics of Trivalent Radionuclides with Similar Ionic Dimensions: Promethium-147, Curium-242 and Americium-241. Radiat. Res. 168, 327–331 (2007).
Data on the distribution and redistribution patterns in the laboratory rat of three trivalent elements with a similar ionic radius have been compared. This showed that these distributions for the two ions with the same ionic radius (111 pm), i.e., those of promethium (a lanthanoid) and curium (an actinoid), were indistinguishable and that americium, with a slightly larger ion size (111.5 pm), behaved similarly. The results are consistent with the suggestion that ion size is the only important factor controlling the deposition and redistribution patterns of trivalent lanthanoids and actinoids in rats. The result is important because it suggests that the same radiological protection dosimetry models should be used for trivalent actinoids and lanthanoids, that human volunteer data generated for lanthanoid isotopes can be used to predict the behavior of actinoids with the same ion size, and that appropriate pairs of β-particle-emitting lanthanoid and α-particle-emitting actinoids could be used to study the relative toxicity of α and β particles in experimental animals.
Neti, P. V. S. V. and Howell, R. W. Biological Response to Nonuniform Distributions of 210Po in Multicellular Clusters. Radiat. Res. 168, 332–340 (2007).
Radionuclides are distributed nonuniformly in tissue. The present work examined the impact of nonuniformities at the multicellular level on the lethal effects of 210Po. A three-dimensional (3D) tissue culture model was used wherein V79 cells were labeled with 210Po-citrate and mixed with unlabeled cells, and multicellular clusters were formed by centrifugation. The labeled cells were located randomly in the cluster to achieve a uniform distribution of radioactivity at the macroscopic level that was nonuniform at the multicellular level. The clusters were maintained at 10.5°C for 72 h to allow α-particle decays to accumulate and then dismantled, and the cells were seeded for colony formation. Unlike typical survival curves for α particles, two-component exponential dose–response curves were observed for all three labeling conditions. Furthermore, the slopes of the survival curves for 100, 10 and 1% labeling were different. Neither the mean cluster absorbed dose nor a semi-empirical multicellular dosimetry approach could accurately predict the lethal effects of 210Po-citrate.
Yiin, J. H., Silver, S. R., Daniels, R. D., Zaebst, D. D., Seel, E. A. and Kubale, T. L. A Nested Case-Control Study of Lung Cancer Risk and Ionizing Radiation Exposure at the Portsmouth Naval Shipyard. Radiat. Res. 168, 341–348 (2007).
Results have been inconsistent between studies of lung cancer risk and ionizing radiation exposures among workers at the Portsmouth Naval Shipyard (PNS). The purpose of this nested case-control study was to evaluate the relationship between lung cancer risk and external ionizing radiation exposure while adjusting for potential confounders that included gender, radiation monitoring status, smoking habit surrogates (socioeconomic status and birth cohort), welding fumes and asbestos. By incidence density sampling, we age-matched 3,291 controls selected from a cohort of 37,853 civilian workers employed at PNS between 1952 and 1992 with 1,097 lung cancer deaths from among the same cohort. Analyses using conditional logistic regression were conducted in various model forms: log-linear (main), linear excess relative risk (ERR), and categorical. Lung cancer risk was positively associated with occupational dose (OR = 1.02 at 10 mSv; 95% CI 0.99– 1.04) but flattened after the inclusion of work-related medical X-ray doses (OR = 1.00; 95% CI 0.98–1.03) in multivariate analyses. Similar risk estimates were observed in the linear ERR model at 10 mSv of cumulative exposure with a 15-year lag.
Castorina, P., Deisboeck, T. S., Gabriele, P. and Guiot, C. Growth Laws in Cancer: Implications for Radiotherapy. Radiat. Res. 168, 349–356 (2007).
Comparing the conventional Gompertz tumor growth law (GL) with the “Universal” law (UL), which has recently been proposed and applied to cancer, we have investigated the implications of the growth laws for various radiotherapy regimens. According to the GL, the surviving tumor cell fraction could be reduced ad libitum, independent of the initial tumor mass, simply by increasing the number of treatments. In contrast, if tumor growth dynamics follows the Universal scaling law, there is a lower limit of the surviving fraction that cannot be reduced further regardless of the total number of treatments. This finding can explain the so-called tumor size effect and re-emphasizes the importance of early diagnosis because it implies that radiotherapy may be successful provided that the tumor mass at treatment onset is rather small. Taken together with our previous work, the implications of these findings include revisiting standard radiotherapy regimens and treatment protocols overall.
Purkayastha, S., Milligan, J. R. and Bernhard, W. A. On the Chemical Yield of Base Lesions, Strand Breaks, and Clustered Damage Generated in Plasmid DNA by the Direct Effect of X Rays. Radiat. Res. 168, 357–366 (2007).
The purpose of this study was to determine the yield of DNA base damages, deoxyribose damage, and clustered lesions due to the direct effects of ionizing radiation and to compare these with the yield of DNA trapped radicals measured previously in the same pUC18 plasmid. The plasmids were prepared as films hydrated in the range 2.5 < Γ < 22.5 mol water/mol nucleotide. Single-strand breaks (SSBs) and double-strand breaks (DSBs) were detected by agarose gel electrophoresis. Specific types of base lesions were converted into SSBs and DSBs using the base-excision repair enzymes endonuclease III (Nth) and formamidopyrimidine-DNA glycosylase (Fpg). The yield of base damage detected by this method displayed a strikingly different dependence on the level of hydration (Γ) compared with that for the yield of DNA trapped radicals; the former decreased by 3.2 times as Γ was varied from 2.5 to 22.5 and the later increased by 2.4 times over the same range. To explain this divergence, we propose that SSB yields produced in plasmid DNA by the direct effect cannot be analyzed properly with a Poisson process that assumes an average of one strand break per plasmid and neglects the possibility of a single track producing multiple SSBs within a plasmid. The yields of DSBs, on the other hand, are consistent with changes in free radical trapping as a function of hydration. Consequently, the composition of these clusters could be quantified. Deoxyribose damage on each of the two opposing strands occurs with a yield of 3.5 ± 0.5 nmol/J for fully hydrated pUC18, comparable to the yield of 4.1 ± 0.9 nmol/J for DSBs derived from opposed damages in which at least one of the sites is a damaged base.
Swarts, S. G., Gilbert, D. C., Sharma, K. K., Razskazovskiy, Y., Purkayastha, S., Naumenko, K. A. and Bernhard, W. A. Mechanisms of Direct Radiation Damage in DNA, Based on a Study of the Yields of Base Damage, Deoxyribose Damage, and Trapped Radicals in d(GCACGCGTGC)2. Radiat. Res. 168, 367–381 (2007).
Dose–response curves were measured for the formation of direct-type DNA products in X-irradiated d(GCACGCGTGC)2prepared as dry films and as crystalline powders. Damage to deoxyribose (dRib) was assessed by HPLC measurements of strand break products containing 3′ or 5′ terminal phosphate and free base release. Base damage was measured using GC/ MS after acid hydrolysis and trimethylsilylation. The yield of trappable radicals was measured at 4 K by EPR of films X-irradiated at 4 K. With exception of those used for EPR, all samples were X-irradiated at room temperature. There was no measurable difference between working under oxygen or under nitrogen. The chemical yields (in units of nmol/J) for trapped radicals, free base release, 8-oxoGua, 8-oxoAde, diHUra and diHThy were Gtotal(fr) = 618 ± 60, G(fbr) = 93 ± 8, G(8-oxoGua) = 111 ± 62, G(8-oxoAde) = 4 ± 3, G(diHUra) = 127 ± 160, and G(diHThy) = 39 ± 60, respectively. The yields were determined and the dose–response curves explained by a mechanistic model consisting of three reaction pathways: (1) trappable-radical single-track, (2) trappable-radical multiple-track, and (3) molecular. If the base content is projected from the decamer's GC:AT ratio of 4:1 to a ratio of 1:1, the percentage of the total measured damage (349 nmol/J) would partition as follows: 20 ± 16% 8-oxoGua, 3 ± 3% 8-oxoAde, 28 ± 46% diHThy, 23 ± 32% diHUra, and 27 ± 17% dRib damage. With a cautionary note regarding large standard deviations, the projected yield of total damage is higher in CG-rich DNA because C combined with G is more prone to damage than A combined with T, the ratio of base damage to deoxyribose damage is ∼3:1, the yield of diHUra is comparable to the yield of diHThy, and the yield of 8-oxoAde is not negligible. While the quantity and quality of the data fall short of proving the hypothesized model, the model provides an explanation for the dose–response curves of the more prevalent end products and provides a means of measuring their chemical yields, i.e., their rate of formation at zero dose. Therefore, we believe that this comprehensive analytical approach, combined with the mechanistic model, will prove important in predicting risk due to exposure to low doses and low dose rates of ionizing radiation.
Marie Davídková, Libor Juha, Michal Bittner, Sergey Koptyaev, Věra Hájková, Josef Krása, Miroslav Pfeifer, Viktorie Štísová, Andrzej Bartnik, Henryk Fiedorowicz, Janusz Mikolajczyk, Leszek Ryc, Ladislav Pína, Martin Horváth, Dagmar Babánková, Jaroslav Cihelka, Svatopluk Civiš
Davídková, M., Juha, L., Bittner, M., Koptyaev, S., Krása, J., Pfeifer, M., Štísová, V., Bartnik, A., Fiedorowicz, H., Mikolajczyk, J., Ryc, L., Pína, L., Horváth, M., Babánková, D., Cihelka, J. and Civiš, S. A High-Power Laser-Driven Source of Sub-nanosecond Soft X-Ray Pulses for Single-Shot Radiobiology Experiments. Radiat. Res. 168, 382–387 (2007).
A large-scale, double-stream gas puff target has been illuminated by sub-kJ, near-infrared (NIR) focused laser pulses at the PALS facility (Prague Asterix Laser System) to produce high-energy pulses of soft X rays from hot, dense plasma. The double-puff arrangement ensures high gas density and conversion efficiency from NIR to X rays approaching that typical for solid targets. In addition, its major advantage over solid targets is that it is free of debris and has substantially suppressed charged-particle emission. The X-ray emission characteristics of the source were determined for a range of gases that included krypton, xenon, N2, CO and N2-CO. A demonstrated application of the xenon-based source is a single-shot damage induction to plasmid DNA. The yields of single-strand breaks (SSBs) and double-strand breaks (DSBs) were determined as a function of energy fluence adjusted by varying distance of sample from the source and thickness of aluminum filters.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere