Open Access
Translator Disclaimer
22 February 2017 Germicidal Efficacy and Mammalian Skin Safety of 222-nm UV Light
Manuela Buonanno, Brian Ponnaiya, David Welch, Milda Stanislauskas, Gerhard Randers-Pehrson, Lubomir Smilenov, Franklin D. Lowy, David M. Owens, David J. Brenner
Author Affiliations +
Google Scholar citations
CrossRef citations
1. Maria S. Baltadourou, Konstantinos K. Delibasis, Georgios N. Tsigaridas et al., "LaUV: A Physics-Based UV Light Simulator for Disinfection and Communication Applications", IEEE Access 9, pg. 137543, (2021); doi:10.1109/ACCESS.2021.3118302
2. Neysha Lobo-Ploch, Frank Mehnke, Luca Sulmoni et al., "Milliwatt power 233 nm AlGaN-based deep UV-LEDs on sapphire substrates", Applied Physics Letters 117(11), pg. 111102, (2020); doi:10.1063/5.0015263
3. David J. Weber, William A. Rutala, Emily E. Sickbert-Bennett et al., "Continuous room decontamination technologies", American Journal of Infection Control 47, pg. A72, (2019); doi:10.1016/j.ajic.2019.03.016
4. David H. Sliney, Bruce E. Stuck, " A Need to Revise Human Exposure Limits for Ultraviolet UV‐C Radiation † ", Photochemistry and Photobiology 97(3), pg. 485, (2021); doi:10.1111/php.13402
5. Vincent Grenier, Sylvain Finot, Bruno Gayral et al., "Toward Crack-Free Core–Shell GaN/AlGaN Quantum Wells", Crystal Growth & Design 21(11), pg. 6504, (2021); doi:10.1021/acs.cgd.1c00943
6. Tongling Xia, Kangqi Guo, Yue Pan et al., "Temporal and spatial far-ultraviolet disinfection of exhaled bioaerosols in a mechanically ventilated space", Journal of Hazardous Materials 436, pg. 129241, (2022); doi:10.1016/j.jhazmat.2022.129241
7. Manuela Buonanno, David Welch, Igor Shuryak et al., "Far-UVC light (222 nm) efficiently and safely inactivates airborne human coronaviruses", Scientific Reports 10(1), pg. , (2020); doi:10.1038/s41598-020-67211-2
8. Nozomi Yamano, Makoto Kunisada, Aiko Nishiaki‐Sawada et al., "Evaluation of Acute Reactions on Mouse Skin Irradiated with 222 and 235 nm UV‐C", Photochemistry and Photobiology 97(4), pg. 770, (2021); doi:10.1111/php.13384
9. Irina Ivanova, Teodora Svilenska, Bernadett Kurz et al., "Improved Spectral Purity of 222‐nm Irradiation Eliminates Detectable Cyclobutylpyrimidine Dimers Formation in Skin Reconstructs even at High and Repetitive Disinfecting Doses", Photochemistry and Photobiology , pg. , (2022); doi:10.1111/php.13594
10. Mei Wang, Pourzand Charareh, Xia Lei et al., "Autophagy: Multiple Mechanisms to Protect Skin from Ultraviolet Radiation-Driven Photoaging", Oxidative Medicine and Cellular Longevity 2019, pg. 1, (2019); doi:10.1155/2019/8135985
11. Ernest R. Blatchley, David J. Brenner, Holger Claus et al., "Far UV-C radiation: An emerging tool for pandemic control", Critical Reviews in Environmental Science and Technology , pg. 1, (2022); doi:10.1080/10643389.2022.2084315
12. Heeju Hong, WonKook Shin, Jieun Oh et al., "Standard for the Quantification of a Sterilization Effect Using an Artificial Intelligence Disinfection Robot", Sensors 21(23), pg. 7776, (2021); doi:10.3390/s21237776
13. Jane Holland, Liz Kingston, Conor McCarthy et al., "Service Robots in the Healthcare Sector", Robotics 10(1), pg. 47, (2021); doi:10.3390/robotics10010047
14. Na Gao, Junxin Chen, Xiang Feng et al., "Strain engineering of digitally alloyed AlN/GaN nanorods for far-UVC emission as short as 220 nm", Optical Materials Express 11(4), pg. 1282, (2021); doi:10.1364/OME.422215
15. David Welch, Manuela Buonanno, Veljko Grilj et al., "Far-UVC light: A new tool to control the spread of airborne-mediated microbial diseases", Scientific Reports 8(1), pg. , (2018); doi:10.1038/s41598-018-21058-w
16. Sachiko Kaidzu, Kazunobu Sugihara, Masahiro Sasaki et al., "Evaluation of acute corneal damage induced by 222-nm and 254-nm ultraviolet light in Sprague–Dawley rats", Free Radical Research 53(6), pg. 611, (2019); doi:10.1080/10715762.2019.1603378
17. Nozomi Yamano, Makoto Kunisada, Sachiko Kaidzu et al., "Long‐term Effects of 222‐nm ultraviolet radiation C Sterilizing Lamps on Mice Susceptible to Ultraviolet Radiation", Photochemistry and Photobiology 96(4), pg. 853, (2020); doi:10.1111/php.13269
18. Jianshe Yang, "Real Nano “Light Vaccine” Will Benefit to COVID-19 Pandemic Control", Nano-Micro Letters 13(1), pg. , (2021); doi:10.1007/s40820-021-00723-2
19. Yuki Kaiki, Hiroki Kitagawa, Toshinori Hara et al., "Methicillin-resistant Staphylococcus aureus contamination of hospital-use-only mobile phones and efficacy of 222-nm ultraviolet disinfection", American Journal of Infection Control 49(6), pg. 800, (2021); doi:10.1016/j.ajic.2020.11.011
20. Joshua Hadi, Magdalena Dunowska, Shuyan Wu et al., "Control Measures for SARS-CoV-2: A Review on Light-Based Inactivation of Single-Stranded RNA Viruses", Pathogens 9(9), pg. 737, (2020); doi:10.3390/pathogens9090737
21. Arman Seuylemezian, Manuela Buonanno, Lisa Guan et al., "Far-UVC light as a new tool to reduce microbial burden during spacecraft assembly", Advances in Space Research 67(1), pg. 496, (2021); doi:10.1016/j.asr.2020.08.037
22. Wen-Lin Su, Chih-Pei Lin, Hui-Ching Huang et al., "Clinical application of 222 nm wavelength ultraviolet C irradiation on SARS CoV-2 contaminated environments", Journal of Microbiology, Immunology and Infection 55(1), pg. 166, (2022); doi:10.1016/j.jmii.2021.12.005
23. B. Taşkıran Kandeğer, "Mass photokeratitis in coronary angiography medical staff following exposure to unprotected ultraviolet light", Journal Français d'Ophtalmologie 44(5), pg. e317, (2021); doi:10.1016/j.jfo.2020.08.011
24. Alberto Boretti, Bimal Banik, Stefania Castelletto, "Use of Ultraviolet Blood Irradiation Against Viral Infections", Clinical Reviews in Allergy & Immunology 60(2), pg. 259, (2021); doi:10.1007/s12016-020-08811-8
25. Sanjeev K. Bhardwaj, Harpreet Singh, Akash Deep et al., "UVC-based photoinactivation as an efficient tool to control the transmission of coronaviruses", Science of The Total Environment 792, pg. 148548, (2021); doi:10.1016/j.scitotenv.2021.148548
26. Andrew G. Buchan, Liang Yang, Kirk D. Atkinson, "Predicting airborne coronavirus inactivation by far-UVC in populated rooms using a high-fidelity coupled radiation-CFD model", Scientific Reports 10(1), pg. , (2020); doi:10.1038/s41598-020-76597-y
27. K. Konishi, I. Akimoto, J. Isberg et al., "Diffusion-related lifetime and quantum efficiency of excitons in diamond", Physical Review B 102(19), pg. , (2020); doi:10.1103/PhysRevB.102.195204
28. Joohyoung Lee, Sung Tae Yoo, Byeongchan So et al., "Large-area far ultraviolet-C emission of Al0.73Ga0.27N/AlN multiple quantum wells using carbon nanotube based cold cathode electron-beam pumping", Thin Solid Films 711, pg. 138292, (2020); doi:10.1016/j.tsf.2020.138292
29. Jian-Jong Liang, Chun-Che Liao, Chih-Shin Chang et al., "The Effectiveness of Far-Ultraviolet (UVC) Light Prototype Devices with Different Wavelengths on Disinfecting SARS-CoV-2", Applied Sciences 11(22), pg. 10661, (2021); doi:10.3390/app112210661
30. P. Jacob Bueno de Mesquita, William W. Delp, Wanyu R. Chan et al., "Control of airborne infectious disease in buildings: Evidence and research priorities", Indoor Air 32(1), pg. , (2022); doi:10.1111/ina.12965
31. David Welch, Manuela Buonanno, Andrew G. Buchan et al., "Inactivation Rates for Airborne Human Coronavirus by Low Doses of 222 nm Far-UVC Radiation", Viruses 14(4), pg. 684, (2022); doi:10.3390/v14040684
32. Isla Rose Mary Barnard, Ewan Eadie, Kenneth Wood, "Further evidence that far‐UVC for disinfection is unlikely to cause erythema or pre‐mutagenic DNA lesions in skin", Photodermatology, Photoimmunology & Photomedicine 36(6), pg. 476, (2020); doi:10.1111/phpp.12580
33. Mohamed F. Attia, Meenakshi Ranasinghe, Roman Akasov et al., "In situ preparation of gold–polyester nanoparticles for biomedical imaging", Biomaterials Science 8(11), pg. 3032, (2020); doi:10.1039/D0BM00175A
34. Kouji Narita, Krisana Asano, Kyosuke Yamane et al., "Effect of ultraviolet C emitted from KrCl excimer lamp with or without bandpass filter to mouse epidermis", PLOS ONE 17(5), pg. e0267957, (2022); doi:10.1371/journal.pone.0267957
35. Kenneth Wood, Andrew Wood, Camilo Peñaloza et al., "Turn Up the Lights, Leave them On and Shine them All Around—Numerical Simulations Point the Way to more Efficient Use of Far‐UVC Lights for the Inactivation of Airborne Coronavirus", Photochemistry and Photobiology 98(2), pg. 471, (2022); doi:10.1111/php.13523
36. Paula Zwicker, Johannes Schleusener, Silke B. Lohan et al., "Application of 233 nm far-UVC LEDs for eradication of MRSA and MSSA and risk assessment on skin models", Scientific Reports 12(1), pg. , (2022); doi:10.1038/s41598-022-06397-z
37. Yiyu Ou, Paul Michael Petersen, "Application of ultraviolet light sources for in vivo disinfection", Japanese Journal of Applied Physics 60(10), pg. 100501, (2021); doi:10.35848/1347-4065/ac1f47
38. María Olimpia Paz Alvarenga, Sirley Raiane Mamede Veloso, Ana Luisa Cassiano Alves Bezerra et al., "COVID-19 outbreak: Should dental and medical practices consider uv-c technology to enhance disinfection on surfaces? – A systematic review", Journal of Photochemistry and Photobiology 9, pg. 100096, (2022); doi:10.1016/j.jpap.2021.100096
39. Monthanat Ploydaeng, Natta Rajatanavin, Ploysyne Rattanakaemakorn, "UV‐C light: A powerful technique for inactivating microorganisms and the related side effects to the skin", Photodermatology, Photoimmunology & Photomedicine 37(1), pg. 12, (2021); doi:10.1111/phpp.12605
40. H. Morris, R. Murray, "Medical textiles", Textile Progress 52(1-2), pg. 1, (2020); doi:10.1080/00405167.2020.1824468
41. Giovanni Romano, Giacomo Insero, Santi Nonell Marrugat et al., "Innovative light sources for phototherapy", Biomolecular Concepts 13(1), pg. 256, (2022); doi:10.1515/bmc-2022-0020
42. Chukuka S. Enwemeka, Terrance L. Baker, Violet V. Bumah, "The role of UV and blue light in photo-eradication of microorganisms", Journal of Photochemistry and Photobiology 8, pg. 100064, (2021); doi:10.1016/j.jpap.2021.100064
43. Esaú López-Jácome, Rafael Franco-Cendejas, Héctor Quezada et al., "The race between drug introduction and appearance of microbial resistance. Current balance and alternative approaches", Current Opinion in Pharmacology 48, pg. 48, (2019); doi:10.1016/j.coph.2019.04.016
44. Chukuka S. Enwemeka, Violet V. Bumah, John L. Mokili, "Pulsed blue light inactivates two strains of human coronavirus", Journal of Photochemistry and Photobiology B: Biology 222, pg. 112282, (2021); doi:10.1016/j.jphotobiol.2021.112282
45. Nanda Kumar Reddy Nallabala, Vasudeva Reddy Minnam Reddy, V.R. Singh et al., "Enhanced photoresponse performance in GaN based symmetric type MSM ultraviolet-A and MIS ultraviolet-A to C photodetectors", Sensors and Actuators A: Physical 339, pg. 113502, (2022); doi:10.1016/j.sna.2022.113502
46. Jean Cadet, "Harmless Effects of Sterilizing 222‐nm far‐UV Radiation on Mouse Skin and Eye Tissues", Photochemistry and Photobiology 96(4), pg. 949, (2020); doi:10.1111/php.13294
47. Joshua Hadi, Shuyan Wu, Gale Brightwell, "Antimicrobial Blue Light versus Pathogenic Bacteria: Mechanism, Application in the Food Industry, Hurdle Technologies and Potential Resistance", Foods 9(12), pg. 1895, (2020); doi:10.3390/foods9121895
48. Rolf Bergman, David Brenner, Manuela Buonanno et al., "Air Disinfection with Germicidal Ultraviolet: For this Pandemic and the Next", Photochemistry and Photobiology 97(3), pg. 464, (2021); doi:10.1111/php.13424
49. Harpreet Pangli, Anthony Papp, "The relation between positive screening results and MRSA infections in burn patients", Burns 45(7), pg. 1585, (2019); doi:10.1016/j.burns.2019.02.023
50. J. Muñoz-Fernández, Y. Del Rosal, F. Álvarez-Gómez et al., "Selection of LED lighting systems for the reduction of the biodeterioration of speleothems induced by photosynthetic biofilms in the Nerja Cave (Malaga, Spain)", Journal of Photochemistry and Photobiology B: Biology 217, pg. 112155, (2021); doi:10.1016/j.jphotobiol.2021.112155
51. Zhe Sun, Mengkai Li, Wentao Li et al., "A review of the fluence determination methods for UV reactors: Ensuring the reliability of UV disinfection", Chemosphere 286, pg. 131488, (2022); doi:10.1016/j.chemosphere.2021.131488
52. Soichiro Fukuda, Jun Nishikawa, Yuki Kobayashi et al., "The bactericidal effect of far-UVC on ESBL-producing Escherichia coli", American Journal of Infection Control , pg. , (2022); doi:10.1016/j.ajic.2022.04.012
53. Pallabi Pramanik, Sayantani Sen, Chirantan Singha et al., "Deep-UV wavelength-selective photodetectors based on lateral transport in AlGaN/AlN quantum well and dot-in-well structures", AIP Advances 11(8), pg. 085109, (2021); doi:10.1063/5.0059744
54. Sebastian Freeman, Karen Kibler, Zachary Lipsky et al., "Systematic evaluating and modeling of SARS-CoV-2 UVC disinfection", Scientific Reports 12(1), pg. , (2022); doi:10.1038/s41598-022-09930-2
55. F. Javier García de Abajo, Rufino Javier Hernández, Ido Kaminer et al., "Back to Normal: An Old Physics Route to Reduce SARS-CoV-2 Transmission in Indoor Spaces", ACS Nano 14(7), pg. 7704, (2020); doi:10.1021/acsnano.0c04596
56. K. Narita, K. Asano, K. Naito et al., "Ultraviolet C light with wavelength of 222 nm inactivates a wide spectrum of microbial pathogens", Journal of Hospital Infection 105(3), pg. 459, (2020); doi:10.1016/j.jhin.2020.03.030
57. Paul Donald Forbes, Curtis A. Cole, Frank deGruijl, " Origins and Evolution of Photocarcinogenesis Action Spectra, Including Germicidal UVC † ", Photochemistry and Photobiology 97(3), pg. 477, (2021); doi:10.1111/php.13371
58. Peiyang Li, Jacek Koziel, Jeffrey Zimmerman et al., "Mitigation of Airborne PRRSV Transmission with UV Light Treatment: Proof-of-Concept", Agriculture 11(3), pg. 259, (2021); doi:10.3390/agriculture11030259
59. Jun Chance Goh, Dale Fisher, Eileen Chor Hoong Hing et al., "Disinfection capabilities of a 222 nm wavelength ultraviolet lighting device: a pilot study", Journal of Wound Care 30(2), pg. 96, (2021); doi:10.12968/jowc.2021.30.2.96
60. David Welch, David J. Brenner, " Improved Ultraviolet Radiation Film Dosimetry Using OrthoChromic OC‐1 Film † ", Photochemistry and Photobiology 97(3), pg. , (2021); doi:10.1111/php.13364
61. Ben Ma, Patricia M. Gundy, Charles P. Gerba et al., "UV Inactivation of SARS-CoV-2 across the UVC Spectrum: KrCl* Excimer, Mercury-Vapor, and Light-Emitting-Diode (LED) Sources", Applied and Environmental Microbiology 87(22), pg. , (2021); doi:10.1128/AEM.01532-21
62. Allison J. Matthews, Hannah M. Rowe, Jason W. Rosch et al., "A Tn-seq Screen of Streptococcus pneumoniae Uncovers DNA Repair as the Major Pathway for Desiccation Tolerance and Transmission", Infection and Immunity 89(8), pg. , (2021); doi:10.1128/IAI.00713-20
63. Wei‐Hung Chiang, Davide Mariotti, R. Mohan Sankaran et al., "Microplasmas for Advanced Materials and Devices", Advanced Materials 32(18), pg. 1905508, (2020); doi:10.1002/adma.201905508
64. Sung Tae Yoo, Kyu Chang Park, "Sapphire Wafer for 226 nm Far UVC Generation with Carbon Nanotube-Based Cold Cathode Electron Beam (C-Beam) Irradiation", ACS Omega 5(25), pg. 15601, (2020); doi:10.1021/acsomega.0c01824
65. Anna Jaglarz, "Ergonomic Criteria for Bathroom and Toilet Design with Consideration to Potential Health and Hygiene Hazards for Users", Technical Transactions , pg. 1, (2020); doi:10.37705/TechTrans/e2020041
66. Willie Taylor, Emily Camilleri, D. Levi Craft et al., "DNA Damage Kills Bacterial Spores and Cells Exposed to 222-Nanometer UV Radiation", Applied and Environmental Microbiology 86(8), pg. , (2020); doi:10.1128/AEM.03039-19
67. Vicente M. Gómez-López, Eric Jubinville, María Isabel Rodríguez-López et al., "Inactivation of Foodborne Viruses by UV Light: A Review", Foods 10(12), pg. 3141, (2021); doi:10.3390/foods10123141
68. R.P. Hickerson, M.J. Conneely, S.K. Hirata Tsutsumi et al., "Minimal, superficial DNA damage in human skin from filtered far‐ultraviolet C", British Journal of Dermatology 184(6), pg. 1197, (2021); doi:10.1111/bjd.19816
69. Dana Mackenzie, "Ultraviolet Light Fights New Virus", Engineering 6(8), pg. 851, (2020); doi:10.1016/j.eng.2020.06.009
70. Wojciech Janisiewicz, Fumiomi Takeda, Breyn Evans et al., "Potential of far ultraviolet (UV) 222 nm light for management of strawberry fungal pathogens", Crop Protection 150, pg. 105791, (2021); doi:10.1016/j.cropro.2021.105791
71. David Welch, Marilena Aquino de Muro, Manuela Buonanno et al., "Wavelength‐dependent DNA Photodamage in a 3‐D human Skin Model over the Far‐UVC and Germicidal UVC Wavelength Ranges from 215 to 255 nm", Photochemistry and Photobiology , pg. , (2022); doi:10.1111/php.13602
72. Tomoaki Nambu, Taketo Yano, Soshi Umeda et al., "DUV coherent light emission from ultracompact microcavity wavelength conversion device", Optics Express 30(11), pg. 18628, (2022); doi:10.1364/OE.457538
73. Vijay Kumar Sharma, Hilmi Volkan Demir, "Bright Future of Deep-Ultraviolet Photonics: Emerging UVC Chip-Scale Light-Source Technology Platforms, Benchmarking, Challenges, and Outlook for UV Disinfection", ACS Photonics 9(5), pg. 1513, (2022); doi:10.1021/acsphotonics.2c00041
74. F. Takeda, W. Janisiewicz, B. Short et al., "Ultraviolet-C (UV-C) for disease and pest management and automating UV-C delivery technology for strawberry", Acta Horticulturae (1309), pg. 533, (2021); doi:10.17660/ActaHortic.2021.1309.76
75. Kimberly A. Morio, Robert H. Sternowski, Kim A. Brogden, "Using ultraviolet (UV) light emitting diodes (LED) to create sterile root canals and to treat endodontic infections", Current Opinion in Biomedical Engineering 23, pg. 100397, (2022); doi:10.1016/j.cobme.2022.100397
76. Tomoaki Fukui, Takahiro Niikura, Takahiro Oda et al., "Exploratory clinical trial on the safety and bactericidal effect of 222-nm ultraviolet C irradiation in healthy humans", PLOS ONE 15(8), pg. e0235948, (2020); doi:10.1371/journal.pone.0235948
77. F. Chiappa, B. Frascella, G.P. Vigezzi et al., "The efficacy of ultraviolet light-emitting technology against coronaviruses: a systematic review", Journal of Hospital Infection 114, pg. 63, (2021); doi:10.1016/j.jhin.2021.05.005
78. Luke Horton, Angeli Eloise Torres, Shanthi Narla et al., "Spectrum of virucidal activity from ultraviolet to infrared radiation", Photochemical & Photobiological Sciences 19(10), pg. 1262, (2020); doi:10.1039/D0PP00221F
79. Momo Otake, Kaoru Okamoto Yoshiyama, Hiroko Yamaguchi et al., "222 nm ultraviolet radiation C causes more severe damage to guard cells and epidermal cells of Arabidopsis plants than does 254 nm ultraviolet radiation", Photochemical & Photobiological Sciences 20(12), pg. 1675, (2021); doi:10.1007/s43630-021-00123-w
80. Martin Guttmann, Neysha Lobo-Ploch, Heiko Gundlach et al., "Spectrally pure far-UVC emission from AlGaN-based LEDs with dielectric band pass filters", Journal of Physics D: Applied Physics 55(20), pg. 205105, (2022); doi:10.1088/1361-6463/ac5145
81. Yoshiki Saito, Satoshi Wada, Kengo Nagata et al., "Efficiency improvement of AlGaN-based deep-ultraviolet light-emitting diodes and their virus inactivation application", Japanese Journal of Applied Physics 60(8), pg. 080501, (2021); doi:10.35848/1347-4065/ac10f2
82. Cecilia Vera, Fiorella Tulli, Claudio D. Borsarelli, "Photosensitization With Supramolecular Arrays for Enhanced Antimicrobial Photodynamic Treatments", Frontiers in Bioengineering and Biotechnology 9, pg. , (2021); doi:10.3389/fbioe.2021.655370
83. David Welch, Norman J. Kleiman, Peter C. Arden et al., " No Evidence of Induced Skin Cancer or Other Skin Abnormalities after Long‐Term (66 week) Chronic Exposure to 222‐nm Far‐UVC Radiation ", Photochemistry and Photobiology , pg. , (2022); doi:10.1111/php.13656
84. Jinchai Li, Na Gao, Duanjun Cai et al., "Multiple fields manipulation on nitride material structures in ultraviolet light-emitting diodes", Light: Science & Applications 10(1), pg. , (2021); doi:10.1038/s41377-021-00563-0
85. Ewan Eadie, Isla M. R. Barnard, Sally H. Ibbotson et al., " Extreme Exposure to Filtered Far‐UVC: A Case Study † ", Photochemistry and Photobiology 97(3), pg. 527, (2021); doi:10.1111/php.13385
86. Shubham Srivastava, Xingwang Zhao, Ati Manay et al., "Effective ventilation and air disinfection system for reducing coronavirus disease 2019 (COVID-19) infection risk in office buildings", Sustainable Cities and Society 75, pg. 103408, (2021); doi:10.1016/j.scs.2021.103408
87. David Welch, Manuela Buonanno, Igor Shuryak et al., "Effect of far ultraviolet light emitted from an optical diffuser on methicillin-resistant Staphylococcus aureus in vitro", PLOS ONE 13(8), pg. e0202275, (2018); doi:10.1371/journal.pone.0202275
88. Rajappan Radhakrishnan Sumathi, "Review—Status and Challenges in Hetero-epitaxial Growth Approach for Large Diameter AlN Single Crystalline Substrates", ECS Journal of Solid State Science and Technology 10(3), pg. 035001, (2021); doi:10.1149/2162-8777/abe6f5
89. Jeremy D. Collins, Howard Rowley, Tim Leiner et al., " Magnetic Resonance Imaging During a Pandemic: Recommendations by the ISMRM Safety Committee ", Journal of Magnetic Resonance Imaging 55(5), pg. 1322, (2022); doi:10.1002/jmri.28006
90. David Welch, Henry M. Spotnitz, David J. Brenner, "Measurement of UV Emission from a Diffusing Optical Fiber Using Radiochromic Film", Photochemistry and Photobiology 93(6), pg. 1509, (2017); doi:10.1111/php.12798
91. Manuela Buonanno, David Welch, David J. Brenner, " Exposure of Human Skin Models to KrCl Excimer Lamps: The Impact of Optical Filtering † ", Photochemistry and Photobiology 97(3), pg. 517, (2021); doi:10.1111/php.13383
92. Zibo Jing, Zedong Lu, Domenico Santoro et al., "Which UV wavelength is the most effective for chlorine-resistant bacteria in terms of the impact of activity, cell membrane and DNA?", Chemical Engineering Journal 447, pg. 137584, (2022); doi:10.1016/j.cej.2022.137584
93. Jun-Won Kang, Dong-Hyun Kang, " Increased Resistance of Salmonella enterica Serovar Typhimurium and Escherichia coli O157:H7 to 222-Nanometer Krypton-Chlorine Excilamp Treatment by Acid Adaptation ", Applied and Environmental Microbiology 85(6), pg. , (2019); doi:10.1128/AEM.02221-18
94. Franco Fusi, Giovanni Romano, "Shedding light on the restart", Physica Medica 77, pg. 18, (2020); doi:10.1016/j.ejmp.2020.07.018
95. Kouji Narita, Krisana Asano, Yukihiro Morimoto et al., "Chronic irradiation with 222-nm UVC light induces neither DNA damage nor epidermal lesions in mouse skin, even at high doses", PLOS ONE 13(7), pg. e0201259, (2018); doi:10.1371/journal.pone.0201259
96. Sung Tae Yoo, Jee Youn Lee, Alfi Rodiansyah et al., "Far UVC light for E. coli disinfection generated by carbon nanotube cold cathode and sapphire anode", Current Applied Physics 28, pg. 93, (2021); doi:10.1016/j.cap.2021.05.007
97. Liqing Zang, Yasuhito Shimada, Hideto Miyake et al., "Transcriptome analysis of molecular response to UVC irradiation in zebrafish embryos", Ecotoxicology and Environmental Safety 231, pg. 113211, (2022); doi:10.1016/j.ecoenv.2022.113211
98. Hiroki Kitagawa, Toshihito Nomura, Tanuza Nazmul et al., "Effectiveness of 222-nm ultraviolet light on disinfecting SARS-CoV-2 surface contamination", American Journal of Infection Control 49(3), pg. 299, (2021); doi:10.1016/j.ajic.2020.08.022
99. Leon G Leanse, Carolina dos Anjos, João Felipe Besegato et al., "Shedding UVC light on Covid-19 to protect dentistry staff and patients", Laser Physics Letters 18(8), pg. 085602, (2021); doi:10.1088/1612-202X/ac0bc5
100. Ewan Eadie, Waseem Hiwar, Louise Fletcher et al., "Far-UVC (222 nm) efficiently inactivates an airborne pathogen in a room-sized chamber", Scientific Reports 12(1), pg. , (2022); doi:10.1038/s41598-022-08462-z
101. Sergi Cuesta, Anjali Harikumar, Eva Monroy, "Electron beam pumped light emitting devices", Journal of Physics D: Applied Physics 55(27), pg. 273003, (2022); doi:10.1088/1361-6463/ac6237
102. Johannes Glaab, Neysha Lobo-Ploch, Hyun Kyong Cho et al., "Skin tolerant inactivation of multiresistant pathogens using far-UVC LEDs", Scientific Reports 11(1), pg. , (2021); doi:10.1038/s41598-021-94070-2
103. Ishaan Mehta, Hao-Ya Hsueh, Nikolaos Kourtzanidis et al., "Far-UVC Disinfection with Robotic Mobile Manipulator", 2022 International Symposium on Medical Robotics (ISMR), 1, (2022); doi:10.1109/ISMR48347.2022.9807593
104. David Welch, Henry M. Spotnitz, David J. Brenner et al., "Far-UVC light applications: sterilization of MRSA on a surface and inactivation of aerosolized influenza virus", Light-Based Diagnosis and Treatment of Infectious Diseases, 60, (2018); doi:10.1117/12.2309424
105. Sandhya Vidyashankar, Gowri Srinivasa, "Low-cost Robot for Autonomous Disinfection of Corridors", 2021 Fifth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), 1737, (2021); doi:10.1109/I-SMAC52330.2021.9640952
106. Hana Arisesa, Dadin Mahmudin, Yusuf Nur Wijayanto et al., "Far UV-C Beam Propagation Characterization in Air Medium for Human Friendly Virus Sterilization", 2021 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET), 158, (2021); doi:10.1109/ICRAMET53537.2021.9650499
107. Fahim Bin Rahman, Anik Das, Md. Fakwer Uddin Mazumder et al., "Design and Implementation of Surface Disinfection Robot Using UVC Light and Liquid Sanitizer", 2022 International Conference on Innovations in Science, Engineering and Technology (ICISET), 117, (2022); doi:10.1109/ICISET54810.2022.9775838

JOURNAL ARTICLE
9 PAGES


Share
SHARE
RIGHTS & PERMISSIONS
Get copyright permission
Back to Top