CrossRef citations
1. Natalia E. Gutierrez‐Bayona, Camryn Petersen, Raabia H. Hashmi et al., "Extending the acute skin response spectrum to include the far‐UVC", Photochemistry and Photobiology , pg. , (2024); doi:10.1111/php.14035
2. Shane A. Landry, Milan Jamriska, Vinay J. Menon et al., "Ultraviolet radiation vs air filtration to mitigate virus laden aerosol in an occupied clinical room", Journal of Hazardous Materials 487, pg. 137211, (2025); doi:10.1016/j.jhazmat.2025.137211
3. David H. Sliney, Bruce E. Stuck, "A Need to Revise Human Exposure Limits for Ultraviolet UV‐C Radiation†", Photochemistry and Photobiology 97(3), pg. 485, (2021); doi:10.1111/php.13402
4. Barbara J. Smith, Blair J. Sampson, Warren E. Copes et al., "UVC (254 nm) and Far UVC (222 nm) Irradiation Affects In Vitro Growth of Colletotrichum sp. Isolates and Their Infection of Detached Strawberry Leaves", PhytoFrontiers™ 4(4), pg. 634, (2024); doi:10.1094/PHYTOFR-03-24-0016-R
5. Vincent Grenier, Sylvain Finot, Bruno Gayral et al., "Toward Crack-Free Core–Shell GaN/AlGaN Quantum Wells", Crystal Growth & Design 21(11), pg. 6504, (2021); doi:10.1021/acs.cgd.1c00943
6. Anna-Maria Gierke, Martin Hessling, "Investigation on Potential ESKAPE Surrogates for 222 and 254 nm Irradiation Experiments", Frontiers in Microbiology 13, pg. , (2022); doi:10.3389/fmicb.2022.942708
7. Yue Pan, Kangqi Guo, Chao-Hsin Lin et al., "Developing a survival probability-based Lagrangian model for predicting ultraviolet disinfection of bioaerosols in enclosed environments", Building and Environment 244, pg. 110765, (2023); doi:10.1016/j.buildenv.2023.110765
8. Tongling Xia, Kangqi Guo, Yue Pan et al., "Temporal and spatial far-ultraviolet disinfection of exhaled bioaerosols in a mechanically ventilated space", Journal of Hazardous Materials 436, pg. 129241, (2022); doi:10.1016/j.jhazmat.2022.129241
9. Maximilian Görlitz, Lennart Justen, Patrick J. Rochette et al., "Assessing the safety of new germicidalfar‐UVCtechnologies", Photochemistry and Photobiology 100(3), pg. 501, (2024); doi:10.1111/php.13866
10. Kazunobu Sugihara, Sachiko Kaidzu, Masahiro Sasaki et al., "Interventional human ocular safety experiments for 222‐nm far‐ultraviolet‐C lamp irradiation", Photochemistry and Photobiology 101(2), pg. 517, (2025); doi:10.1111/php.14016
11. Kimia Ghasemi Arzanani, Mohammad Reza Rashidian Vaziri, Samaneh Sharif et al., "A review on applications and safety of 222 nm far UVC light for surface and air disinfection", Biophysical Reviews , pg. , (2025); doi:10.1007/s12551-025-01269-y
12. Pushan Guha Roy, Sayantani Sen, Chirantan Singha et al., "Growth of AlGaN alloys with ∼ 90 % AlN mole fraction by plasma-assisted molecular beam epitaxy: Indication of phase-segregation effects", Journal of Crystal Growth 642, pg. 127792, (2024); doi:10.1016/j.jcrysgro.2024.127792
13. Mei Wang, Pourzand Charareh, Xia Lei et al., "Autophagy: Multiple Mechanisms to Protect Skin from Ultraviolet Radiation-Driven Photoaging", Oxidative Medicine and Cellular Longevity 2019, pg. 1, (2019); doi:10.1155/2019/8135985
14. Ernest R. Blatchley, David J. Brenner, Holger Claus et al., "Far UV-C radiation: An emerging tool for pandemic control", Critical Reviews in Environmental Science and Technology 53(6), pg. 733, (2023); doi:10.1080/10643389.2022.2084315
15. Jesus Cañas, Anjali Harikumar, Stephen T. Purcell et al., "AlGaN/AlN Stranski–Krastanov Quantum Dots for Highly Efficient Electron Beam-Pumped Emitters: The Role of Miniaturization and Composition to Attain Far UV-C Emission", ACS Photonics 10(12), pg. 4225, (2023); doi:10.1021/acsphotonics.3c00948
16. Hayden P. Nix, Samantha Meeker, Caroline E. King et al., "Preventing Respiratory Viral Illness Invisibly (PRiVII): protocol for a pragmatic cluster randomized trial evaluating far-UVC light devices in long-term care facilities to reduce infections", Trials 25(1), pg. , (2024); doi:10.1186/s13063-024-07909-0
17. Heeju Hong, WonKook Shin, Jieun Oh et al., "Standard for the Quantification of a Sterilization Effect Using an Artificial Intelligence Disinfection Robot", Sensors 21(23), pg. 7776, (2021); doi:10.3390/s21237776
18. Abel Hurtado Macias, M. Román-Aguirre, R.P. Talamantes et al., "Comparative study between UVB 313 nm, UVC 254 nm, and far UVC 222 nm light on the aging of polyamide 66", Heliyon 10(20), pg. e39415, (2024); doi:10.1016/j.heliyon.2024.e39415
19. Ana C. Lorenzo-Leal, Wenxi Tam, Ata Kheyrandish et al., "Antimicrobial Activity of Filtered Far‐UVC Light (222 nm) against Different Pathogens", BioMed Research International 2023(1), pg. , (2023); doi:10.1155/2023/2085140
20. Jane Holland, Liz Kingston, Conor McCarthy et al., "Service Robots in the Healthcare Sector", Robotics 10(1), pg. 47, (2021); doi:10.3390/robotics10010047
21. David Welch, Manuela Buonanno, Veljko Grilj et al., "Far-UVC light: A new tool to control the spread of airborne-mediated microbial diseases", Scientific Reports 8(1), pg. , (2018); doi:10.1038/s41598-018-21058-w
22. Sachiko Kaidzu, Kazunobu Sugihara, Masahiro Sasaki et al., "Evaluation of acute corneal damage induced by 222-nm and 254-nm ultraviolet light in Sprague–Dawley rats", Free Radical Research 53(6), pg. 611, (2019); doi:10.1080/10715762.2019.1603378
23. Nozomi Yamano, Makoto Kunisada, Sachiko Kaidzu et al., "Long‐term Effects of 222‐nm ultraviolet radiation C Sterilizing Lamps on Mice Susceptible to Ultraviolet Radiation", Photochemistry and Photobiology 96(4), pg. 853, (2020); doi:10.1111/php.13269
24. Yuki Kaiki, Hiroki Kitagawa, Toshinori Hara et al., "Methicillin-resistant Staphylococcus aureus contamination of hospital-use-only mobile phones and efficacy of 222-nm ultraviolet disinfection", American Journal of Infection Control 49(6), pg. 800, (2021); doi:10.1016/j.ajic.2020.11.011
25. Loris Busch, Marius Kröger, Daniela F. Zamudio Díaz et al., "Far‐UVC‐ and UVB‐induced DNA damage depending on skin type", Experimental Dermatology 32(9), pg. 1582, (2023); doi:10.1111/exd.14902
26. Joshua Hadi, Magdalena Dunowska, Shuyan Wu et al., "Control Measures for SARS-CoV-2: A Review on Light-Based Inactivation of Single-Stranded RNA Viruses", Pathogens 9(9), pg. 737, (2020); doi:10.3390/pathogens9090737
27. Arman Seuylemezian, Manuela Buonanno, Lisa Guan et al., "Far-UVC light as a new tool to reduce microbial burden during spacecraft assembly", Advances in Space Research 67(1), pg. 496, (2021); doi:10.1016/j.asr.2020.08.037
28. Wen-Lin Su, Chih-Pei Lin, Hui-Ching Huang et al., "Clinical application of 222 nm wavelength ultraviolet C irradiation on SARS CoV-2 contaminated environments", Journal of Microbiology, Immunology and Infection 55(1), pg. 166, (2022); doi:10.1016/j.jmii.2021.12.005
29. Aaron M. Goldfain, Grace E. Waters, Lynn Davis et al., "Validated UV-C bidirectional reflectance distribution function measurements with a spectrophotometer directional reflectance module", Applied Optics 63(29), pg. 7715, (2024); doi:10.1364/AO.527427
30. M.H. Wang, H.H. Zhang, C.K. Chan et al., "Experimental study of the disinfection performance of a 222-nm Far-UVC upper-room system on airborne microorganisms in a full-scale chamber", Building and Environment 236, pg. 110260, (2023); doi:10.1016/j.buildenv.2023.110260
31. Sekar Ashokkumar, Nagendra Kumar Kaushik, Ihn Han et al., "Persistence of Coronavirus on Surface Materials and Its Control Measures Using Nonthermal Plasma and Other Agents", International Journal of Molecular Sciences 24(18), pg. 14106, (2023); doi:10.3390/ijms241814106
32. Sanjeev K. Bhardwaj, Harpreet Singh, Akash Deep et al., "UVC-based photoinactivation as an efficient tool to control the transmission of coronaviruses", Science of The Total Environment 792, pg. 148548, (2021); doi:10.1016/j.scitotenv.2021.148548
33. Aaron A. Baumann, Addison K. Myers, Niloofar Khajeh-Kazerooni et al., "
UV radiation at 222, 254, and 282 nm inhibits sporulation and suppresses infectivity of
Eimeria acervulina
oocysts
", Microbiology Spectrum 13(3), pg. , (2025); doi:10.1128/spectrum.02439-24
34. Kosuke Sugiyama, Kiyotaka Kurachi, Masaki Sano et al., "Bactericidal effect of far ultraviolet-C irradiation at 222 nm against bacterial peritonitis", PLOS ONE 19(11), pg. e0311552, (2024); doi:10.1371/journal.pone.0311552
35. Jian-Jong Liang, Chun-Che Liao, Chih-Shin Chang et al., "The Effectiveness of Far-Ultraviolet (UVC) Light Prototype Devices with Different Wavelengths on Disinfecting SARS-CoV-2", Applied Sciences 11(22), pg. 10661, (2021); doi:10.3390/app112210661
36. Alexis Panzures, "222-nm UVC light as a skin-safe solution to antimicrobial resistance in acute hospital settings with a particular focus on methicillin-resistant Staphylococcus aureus and surgical site infections: a review", Journal of Applied Microbiology 134(3), pg. , (2023); doi:10.1093/jambio/lxad046
37. P. Jacob Bueno de Mesquita, William W. Delp, Wanyu R. Chan et al., "Control of airborne infectious disease in buildings: Evidence and research priorities", Indoor Air 32(1), pg. , (2022); doi:10.1111/ina.12965
38. Richard T. Robinson, Najmus Mahfooz, Oscar Rosas-Mejia et al., "UV222 disinfection of SARS-CoV-2 in solution", Scientific Reports 12(1), pg. , (2022); doi:10.1038/s41598-022-18385-4
39. David Welch, Manuela Buonanno, Andrew G. Buchan et al., "Inactivation Rates for Airborne Human Coronavirus by Low Doses of 222 nm Far-UVC Radiation", Viruses 14(4), pg. 684, (2022); doi:10.3390/v14040684
40. Isla Rose Mary Barnard, Ewan Eadie, Kenneth Wood, "Further evidence that far‐UVC for disinfection is unlikely to cause erythema or pre‐mutagenic DNA lesions in skin", Photodermatology, Photoimmunology & Photomedicine 36(6), pg. 476, (2020); doi:10.1111/phpp.12580
41. Chee Huan Leow, Lip Huat Saw, Foon Siang Low et al., "Investigations on the surface disinfection efficacy of far-UVC 222 nm germicidal irradiance device in a controlled environment and field test", Journal of Environmental Health Science and Engineering 22(2), pg. 569, (2024); doi:10.1007/s40201-024-00918-w
42. Zhongqiu Xing, Aoxiang Zhang, Yipu Qu et al., "Increasing the hole energy by the p-type dual polarization for high internal quantum efficiency of 237 nm-band deep ultraviolet light-emitting diodes", Optical Engineering 63(02), pg. , (2024); doi:10.1117/1.OE.63.2.027103
43. Mohamed F. Attia, Meenakshi Ranasinghe, Roman Akasov et al., "In situ preparation of gold–polyester nanoparticles for biomedical imaging", Biomaterials Science 8(11), pg. 3032, (2020); doi:10.1039/D0BM00175A
44. Kenneth Wood, Andrew Wood, Camilo Peñaloza et al., "Turn Up the Lights, Leave them On and Shine them All Around—Numerical Simulations Point the Way to more Efficient Use of Far‐UVC Lights for the Inactivation of Airborne Coronavirus", Photochemistry and Photobiology 98(2), pg. 471, (2022); doi:10.1111/php.13523
45. H. Morris, R. Murray, "Medical textiles", Textile Progress 52(1-2), pg. 1, (2020); doi:10.1080/00405167.2020.1824468
46. Qingnan Mo, Mingming Tu, Yitian Zang et al., "Antibacterial effect and mechanism of shorter ultraviolet light (222 nm) combined with slightly acidic electrolyzed water against Escherichia coli", LWT 193, pg. 115761, (2024); doi:10.1016/j.lwt.2024.115761
47. Esaú López-Jácome, Rafael Franco-Cendejas, Héctor Quezada et al., "The race between drug introduction and appearance of microbial resistance. Current balance and alternative approaches", Current Opinion in Pharmacology 48, pg. 48, (2019); doi:10.1016/j.coph.2019.04.016
48. Jean Cadet, "Harmless Effects of Sterilizing 222‐nm far‐UV Radiation on Mouse Skin and Eye Tissues", Photochemistry and Photobiology 96(4), pg. 949, (2020); doi:10.1111/php.13294
49. Joshua Hadi, Shuyan Wu, Gale Brightwell, "Antimicrobial Blue Light versus Pathogenic Bacteria: Mechanism, Application in the Food Industry, Hurdle Technologies and Potential Resistance", Foods 9(12), pg. 1895, (2020); doi:10.3390/foods9121895
50. Zi-Bo Jing, Wen-Long Wang, Yu-Jia Nong et al., "Suppression of photoreactivation of E. coli by excimer far-UV light (222 nm) via damage to multiple targets", Water Research 255, pg. 121533, (2024); doi:10.1016/j.watres.2024.121533
51. X.W. Su, B.R. Chen, W.S. Li et al., "Experimental investigation comparing Far-UVC (222nm) and UVC (254nm) for inactivation of bacteria on hard and fabric surfaces", Building and Environment 267, pg. 112324, (2025); doi:10.1016/j.buildenv.2024.112324
52. Jan-Niklas Keil, Heike Kätker, René T. Wegh et al., "Novel bandpass filter for far UV-C emitting radiation sources", Optical Materials 140, pg. 113866, (2023); doi:10.1016/j.optmat.2023.113866
53. Amanda Gardner, Aswathi Soni, Adrian Cookson et al., "Light tolerance of extended spectrum β-lactamase producing Escherichia coli strains after repetitive exposure to far-UVC and blue LED light", Journal of Applied Microbiology 134(7), pg. , (2023); doi:10.1093/jambio/lxad124
54. Andreia Boaro, Luiz Duarte Ramos, Erick Leite Bastos et al., "Comparison of the mechanisms of DNA damage following photoexcitation and chemiexcitation", Journal of Photochemistry and Photobiology B: Biology 262, pg. 113070, (2025); doi:10.1016/j.jphotobiol.2024.113070
55. Qunxiang Ong, Winson Wee, Joshua Dela Cruz et al., "222-Nanometer Far-UVC Exposure Results in DNA Damage and Transcriptional Changes to Mammalian Cells", International Journal of Molecular Sciences 23(16), pg. 9112, (2022); doi:10.3390/ijms23169112
56. Monika Monika, Santhosh Kumar Madugula, Kiran Kondabagil et al., "Far‐UVC (222 nm) irradiation effectively inactivates ssRNA, dsRNA, ssDNA, and dsDNA viruses as compared to germicidal UVC (254 nm)", Photochemistry and Photobiology 101(1), pg. 147, (2025); doi:10.1111/php.13961
57. Claudia Maria Tucciarone, Mattia Cecchinato, Lucrezia Vianello et al., "Evaluation of UVC Excimer Lamp (222 nm) Efficacy for Coronavirus Inactivation in an Animal Model", Viruses 14(9), pg. 2038, (2022); doi:10.3390/v14092038
58. Ábris Dávid Virág, Csenge Tóth, Kolos Molnár, "Photodegradation of polylactic acid: Characterisation of glassy and melt behaviour as a function of molecular weight", International Journal of Biological Macromolecules 252, pg. 126336, (2023); doi:10.1016/j.ijbiomac.2023.126336
59. Kazunobu Sugihara, Sachiko Kaidzu, Masahiro Sasaki et al., "Ocular safety of 222‐nm far‐ultraviolet‐c full‐room germicidal irradiation: A 36‐month clinical observation", Photochemistry and Photobiology , pg. , (2024); doi:10.1111/php.14052
60. Toshihiko Fukamachi, Junichi Nishinaka, Koichi Naniwae et al., "Demonstration of a violet-distributed feedback laser with fairly small temperature dependence in current-light characteristics", Applied Physics Express 17(5), pg. 052004, (2024); doi:10.35848/1882-0786/ad40fb
61. Saba Seyedi, Ben Ma, Megan Groves et al., "Field Study and Evaluation of KrCl* Far UV‐C Device Capability for Inactivation of Phi6 Bacteriophage", Photochemistry and Photobiology 99(5), pg. 1293, (2023); doi:10.1111/php.13767
62. Tim Kolbe, Arne Knauer, Jens Rass et al., "234 nm far-ultraviolet-C light-emitting diodes with polarization-doped hole injection layer", Applied Physics Letters 122(19), pg. , (2023); doi:10.1063/5.0143661
63. Chikako Nishigori, Nozomi Yamano, Makoto Kunisada et al., "Biological Impact of Shorter Wavelength Ultraviolet Radiation‐C†", Photochemistry and Photobiology 99(2), pg. 335, (2023); doi:10.1111/php.13742
64. Christopher A. Bowers, Jason A. Randall, Christopher Jones et al., "Experimental Observation and Simulation of UV-C-Based Personal-Scale Reactors for Airborne Pathogen Disinfection", ACS ES&T Engineering 5(4), pg. 1054, (2025); doi:10.1021/acsestengg.4c00803
65. F. Javier García de Abajo, Rufino Javier Hernández, Ido Kaminer et al., "Back to Normal: An Old Physics Route to Reduce SARS-CoV-2 Transmission in Indoor Spaces", ACS Nano 14(7), pg. 7704, (2020); doi:10.1021/acsnano.0c04596
66. Ishaan Mehta, Hao-Ya Hsueh, Sharareh Taghipour et al., "UV Disinfection Robots: A Review", Robotics and Autonomous Systems 161, pg. 104332, (2023); doi:10.1016/j.robot.2022.104332
67. Yuki Iwasa, Kenichi Kinoshita, Hiroshi Shitomi, "Spectral Mismatch Effect of Ultraviolet Radiometers in Actual UV‐C Measurement", Photochemistry and Photobiology 99(5), pg. 1240, (2023); doi:10.1111/php.13765
68. Jun Chance Goh, Dale Fisher, Eileen Chor Hoong Hing et al., "Disinfection capabilities of a 222 nm wavelength ultraviolet lighting device: a pilot study", Journal of Wound Care 30(2), pg. 96, (2021); doi:10.12968/jowc.2021.30.2.96
69. 竹涛 Zhu Tao, 付顺江 Fu Shunjiang, 谢蔚 Xie Wei et al., "短波紫外线的消杀机制与影响因素", Chinese Journal of Lasers 50(9), pg. 0907209, (2023); doi:10.3788/CJL221541
70. David Welch, David J. Brenner, "Improved Ultraviolet Radiation Film Dosimetry Using OrthoChromic OC‐1 Film†", Photochemistry and Photobiology 97(3), pg. , (2021); doi:10.1111/php.13364
71. Haoxiang Wu, Yuhao Lu, Ruixuan Wang et al., "Synergistic Disinfection by 222 nm Far-UVC and Negative Air Ions of Airborne Bacteria and the Induced Oxidative Stress Responses: A Bioaerosol Chamber Study", ACS ES&T Air 1(12), pg. 1629, (2024); doi:10.1021/acsestair.4c00162
72. A. Knauer, T. Kolbe, S. Hagedorn et al., "Strain induced power enhancement of far-UVC LEDs on high temperature annealed AlN templates", Applied Physics Letters 122(1), pg. , (2023); doi:10.1063/5.0134253
73. Anna Jaglarz, "Ergonomic Criteria for Bathroom and Toilet Design with Consideration to Potential Health and Hygiene Hazards for Users", Technical Transactions , pg. 1, (2020); doi:10.37705/TechTrans/e2020041
74. Willie Taylor, Emily Camilleri, D. Levi Craft et al., "DNA Damage Kills Bacterial Spores and Cells Exposed to 222-Nanometer UV Radiation", Applied and Environmental Microbiology 86(8), pg. , (2020); doi:10.1128/AEM.03039-19
75. Xiaowei Sheng, Jin Wang, Luling Zhao et al., "Inactivation mechanism of cold plasma combined with 222 nm ultraviolet for spike protein and its application in disinfecting of SARS-CoV-2", Journal of Hazardous Materials 465, pg. 133458, (2024); doi:10.1016/j.jhazmat.2024.133458
76. R.P. Hickerson, M.J. Conneely, S.K. Hirata Tsutsumi et al., "Minimal, superficial DNA damage in human skin from filtered far‐ultraviolet C", British Journal of Dermatology 184(6), pg. 1197, (2021); doi:10.1111/bjd.19816
77. Renata Spagolla Napoleão Tavares, Douglas Adamoski, Alessandra Girasole et al., "Different biological effects of exposure to far-UVC (222 nm) and near-UVC (254 nm) irradiation", Journal of Photochemistry and Photobiology B: Biology 243, pg. 112713, (2023); doi:10.1016/j.jphotobiol.2023.112713
78. Yongyi Wang, Ben Ma, Jing Zhao et al., "Rapid Inactivation of Fungal Spores in Drinking Water by Far-UVC Photolysis of Free Chlorine", Environmental Science & Technology 57(51), pg. 21876, (2023); doi:10.1021/acs.est.3c05703
79. Valentin Jmerik, Vladimir Kozlovsky, Xinqiang Wang, "Electron-Beam-Pumped UVC Emitters Based on an (Al,Ga)N Material System", Nanomaterials 13(14), pg. 2080, (2023); doi:10.3390/nano13142080
80. Lemin Jia, Lu Cheng, Wei Zheng, "8-nm narrowband photodetection in diamonds", Opto-Electronic Science 2(7), pg. 230010, (2023); doi:10.29026/oes.2023.230010
81. Kaoru Okamoto Yoshiyama, Takehiro Hayashi, Yujiro Takano et al., "Verification Test of Sterilization/Virus Inactivation Effect Using 254 nm Ultraviolet Irradiation Device in Commercial Facility", JOURNAL OF THE ILLUMINATING ENGINEERING INSTITUTE OF JAPAN 108(1), pg. 17, (2024); doi:10.2150/jieij.22000625
82. Eri Matsubara, Tomoya Omori, Ryota Hasegawa et al., "Performance of Ultraviolet‐B Laser Diodes on AlGaN Templates Prepared Using Different Fabrication Methods", physica status solidi (a) 220(16), pg. , (2023); doi:10.1002/pssa.202200836
83. Keisuke Naito, Kazuyuki Sawadaishi, Masahiro Kawasaki, "Photobiochemical mechanisms of biomolecules relevant to germicidal ultraviolet irradiation at 222 and 254 nm", Scientific Reports 12(1), pg. , (2022); doi:10.1038/s41598-022-22969-5
84. A. V. Shutov, E. V. Ionushaite, A. D. Vorontsova et al., "Resonance-Enhanced Multiphoton Ionization of Molecular Oxygen at the 222 nm KrCl Laser Wavelength", Journal of Russian Laser Research 43(4), pg. 497, (2022); doi:10.1007/s10946-022-10075-w
85. F. Chiappa, B. Frascella, G.P. Vigezzi et al., "The efficacy of ultraviolet light-emitting technology against coronaviruses: a systematic review", Journal of Hospital Infection 114, pg. 63, (2021); doi:10.1016/j.jhin.2021.05.005
86. Johannes Schleusener, Silke B. Lohan, Loris Busch et al., "Treatment of the Candida subspecies Candida albicans and Candida parapsilosis with two far‐UVC sources to minimise mycoses in clinical practice", Mycoses 66(1), pg. 25, (2023); doi:10.1111/myc.13521
87. Yoshiki Saito, Satoshi Wada, Kengo Nagata et al., "Efficiency improvement of AlGaN-based deep-ultraviolet light-emitting diodes and their virus inactivation application", Japanese Journal of Applied Physics 60(8), pg. 080501, (2021); doi:10.35848/1347-4065/ac10f2
88. Ben Ma, Sam Burke-Bevis, Luke Tiefel et al., "Reflection of UVC wavelengths from common materials during surface UV disinfection: Assessment of human UV exposure and ozone generation", Science of The Total Environment 869, pg. 161848, (2023); doi:10.1016/j.scitotenv.2023.161848
89. Nahoko Fujimoto, Katsuya Nagaoka, Ichiro Tatsuno et al., "Wavelength dependence of ultraviolet light inactivation for SARS-CoV-2 omicron variants", Scientific Reports 13(1), pg. , (2023); doi:10.1038/s41598-023-36610-6
90. Qian Liu, Xuyan Wang, Li Jiang et al., "Disinfection efficacy and safety of 222-nm UVC compared with 254-nm UVC: Systematic review and meta-analysis", Journal of Hospital Infection , pg. , (2025); doi:10.1016/j.jhin.2025.04.004
91. Jeremy D. Collins, Howard Rowley, Tim Leiner et al., "Magnetic Resonance Imaging During a Pandemic: Recommendations by the ISMRM Safety Committee", Journal of Magnetic Resonance Imaging 55(5), pg. 1322, (2022); doi:10.1002/jmri.28006
92. Zibo Jing, Zedong Lu, Domenico Santoro et al., "Which Uv Wavelength is the Most Effective for Chlorine-Resistant Bacteria in Terms of the Impact of Activity, Cell Membrane and DNA?", SSRN Electronic Journal , pg. , (2022); doi:10.2139/ssrn.4070255
93. Zibo Jing, Zedong Lu, Domenico Santoro et al., "Which UV wavelength is the most effective for chlorine-resistant bacteria in terms of the impact of activity, cell membrane and DNA?", Chemical Engineering Journal 447, pg. 137584, (2022); doi:10.1016/j.cej.2022.137584
94. 冬冬 袁, " Biological Characteristics of Coronavirus with Disinfection by Ultraviolet Rays", Bioprocess 12(04), pg. 264, (2022); doi:10.12677/BP.2022.124031
95. Sung Tae Yoo, Jee Youn Lee, Alfi Rodiansyah et al., "Far UVC light for E. coli disinfection generated by carbon nanotube cold cathode and sapphire anode", Current Applied Physics 28, pg. 93, (2021); doi:10.1016/j.cap.2021.05.007
96. Obaid Kousha, Paul O'Mahoney, Robert Hammond et al., "222 nm Far‐UVC from filtered Krypton‐Chloride excimer lamps does not cause eye irritation when deployed in a simulated office environment", Photochemistry and Photobiology 100(1), pg. 137, (2024); doi:10.1111/php.13805
97. Tu-Wen Chen, Rong-Kung Tsai, Cheng-En Zou et al., "Far-Ultraviolet C Disinfection Reduces Oxidative Damage to the Cornea Compared to Povidone-Iodine Disinfection", Antioxidants 13(11), pg. 1344, (2024); doi:10.3390/antiox13111344
98. Ewan Eadie, Waseem Hiwar, Louise Fletcher et al., "Far-UVC (222 nm) efficiently inactivates an airborne pathogen in a room-sized chamber", Scientific Reports 12(1), pg. , (2022); doi:10.1038/s41598-022-08462-z
99. Yang Lv, Xi Chen, Wentao Wu et al., "Experimental and numerical study on upper-room Far-UVC system under different ventilation schemes to disinfect airborne microorganisms in indoor environments", Building and Environment 266, pg. 112108, (2024); doi:10.1016/j.buildenv.2024.112108
100. Kaiheng Guo, Sining Wu, Wenlei Qin et al., "Overlooked Generation of Reactive Oxidative Species from Water and Dioxygen by Far UV Light", Environmental Science & Technology 58(50), pg. 22431, (2024); doi:10.1021/acs.est.4c06404
101. Thomas Willmott, Gavin Humphreys, Krista Chappell-Jones et al., "Antibacterial effects in blood irradiated with a polychromatic device mediated through reactive oxygen species: possible involvement of haem", Letters in Applied Microbiology 76(5), pg. , (2023); doi:10.1093/lambio/ovad041
102. Ryoya Iwase, Ryota Akaike, Hiroki Yasunaga et al., "230 nm electron-beam excited light source with AlGaN/AlN multiple quantum wells on face-to-face annealed sputter-deposited AlN template", Journal of Crystal Growth 660, pg. 128142, (2025); doi:10.1016/j.jcrysgro.2025.128142
103. Dilpreet Singh, Anand R. Soorneedi, Nachiket Vaze et al., "Assessment of SARS-CoV-2 surrogate inactivation on surfaces and in air using UV and blue light-based intervention technologies", Journal of the Air & Waste Management Association 73(3), pg. 200, (2023); doi:10.1080/10962247.2022.2157907
104. Maria S. Baltadourou, Konstantinos K. Delibasis, Georgios N. Tsigaridas et al., "LaUV: A Physics-Based UV Light Simulator for Disinfection and Communication Applications", IEEE Access 9, pg. 137543, (2021); doi:10.1109/ACCESS.2021.3118302
105. Neysha Lobo-Ploch, Frank Mehnke, Luca Sulmoni et al., "Milliwatt power 233 nm AlGaN-based deep UV-LEDs on sapphire substrates", Applied Physics Letters 117(11), pg. , (2020); doi:10.1063/5.0015263
106. David J. Weber, William A. Rutala, Emily E. Sickbert-Bennett et al., "Continuous room decontamination technologies", American Journal of Infection Control 47, pg. A72, (2019); doi:10.1016/j.ajic.2019.03.016
107. Chee Huan Leow, Lip Huat Saw, Foon Siang Low, "Investigations of the UVC 222 NM air cleaning system in an air-conditioned room", Building and Environment 265, pg. 111990, (2024); doi:10.1016/j.buildenv.2024.111990
108. Emilie Hage Mogensen, Jacob Thyrsted Jensen, Søren Helbo Skaarup et al., "Ceiling-mounted far-UVC fixtures reduce the surface bioburden in occupied clinical areas", Infection Control & Hospital Epidemiology , pg. 1, (2025); doi:10.1017/ice.2025.62
109. Tomoaki Nambu, Tomohiro Nakahara, Yuma Yasuda et al., "Second harmonic generation from a-plane GaN vertical monolithic microcavity pumped with femtosecond laser", Applied Physics Express 16(7), pg. 072005, (2023); doi:10.35848/1882-0786/ace242
110. Emilie Hage Mogensen, Christian Kanstrup Holm, "Intermittent low-dose far-UVC irradiation inhibits growth of common mold below threshold limit value", PLOS ONE 19(7), pg. e0299421, (2024); doi:10.1371/journal.pone.0299421
111. Manuela Buonanno, David Welch, Igor Shuryak et al., "Far-UVC light (222 nm) efficiently and safely inactivates airborne human coronaviruses", Scientific Reports 10(1), pg. , (2020); doi:10.1038/s41598-020-67211-2
112. Nozomi Yamano, Makoto Kunisada, Aiko Nishiaki‐Sawada et al., "Evaluation of Acute Reactions on Mouse Skin Irradiated with 222 and 235 nm UV‐C", Photochemistry and Photobiology 97(4), pg. 770, (2021); doi:10.1111/php.13384
113. Irina Ivanova, Teodora Svilenska, Bernadett Kurz et al., "Improved Spectral Purity of 222‐nm Irradiation Eliminates Detectable Cyclobutylpyrimidine Dimers Formation in Skin Reconstructs even at High and Repetitive Disinfecting Doses", Photochemistry and Photobiology 98(5), pg. 1149, (2022); doi:10.1111/php.13594
114. Michael A. Duncan, David Welch, Igor Shuryak et al., "Ocular and Facial Far‐UVC Doses from Ceiling‐Mounted 222 nm Far‐UVC Fixtures", Photochemistry and Photobiology 99(1), pg. 160, (2023); doi:10.1111/php.13671
115. Yi Zhang, Shao Yan, Fang Xiao et al., "Long-persistent far-UVC light emission in Pr3+-doped Sr2P2O7 phosphor for microbial sterilization", Inorganic Chemistry Frontiers 10(20), pg. 5958, (2023); doi:10.1039/D3QI01253K
116. Yizhen Wu, Peiyao Guo, Dekun Luo et al., "Feasibility analysis of inactivating influenza A(H1N1) virus using UVC robot in classroom environment", Heliyon 10(8), pg. e29540, (2024); doi:10.1016/j.heliyon.2024.e29540
117. Jong-Il Bang, Ye-Lim Jo, Eun-Tack Lee et al., "Far-UVC (222 nm) disinfection performance in residential spaces: Experimental study on Bacillus subtilis contamination", Results in Engineering 25, pg. 103642, (2025); doi:10.1016/j.rineng.2024.103642
118. Na Gao, Junxin Chen, Xiang Feng et al., "Strain engineering of digitally alloyed AlN/GaN nanorods for far-UVC emission as short as 220 nm", Optical Materials Express 11(4), pg. 1282, (2021); doi:10.1364/OME.422215
119. Agustí Sala-Luis, Haizea Oliveira-Urquiri, Pilar Bosch-Roig et al., "Eco-Sustainable Approaches to Prevent and/or Eradicate Fungal Biodeterioration on Easel Painting", Coatings 14(1), pg. 124, (2024); doi:10.3390/coatings14010124
120. Huihui Zhang, Alvin C. K. Lai, "Evaluation of Single-Pass Disinfection Performance of Far-UVC Light on Airborne Microorganisms in Duct Flows", Environmental Science & Technology 56(24), pg. 17849, (2022); doi:10.1021/acs.est.2c04861
121. Jianshe Yang, "Real Nano “Light Vaccine” Will Benefit to COVID-19 Pandemic Control", Nano-Micro Letters 13(1), pg. , (2021); doi:10.1007/s40820-021-00723-2
122. David T. Griffin, Terence Gourlay, Michelle Maclean, "The Antibacterial Efficacy of Far-UVC Light: A Combined-Method Study Exploring the Effects of Experimental and Bacterial Variables on Dose–Response", Pathogens 13(8), pg. 698, (2024); doi:10.3390/pathogens13080698
123. Steven C. Hill, David C. Doughty, Daniel W. Mackowski et al., "Enhanced survival fractions of UV-irradiated spores in clusters on a surface in air: Measured and mathematically modeled results at 254-nm", Aerosol Science and Technology 57(6), pg. 487, (2023); doi:10.1080/02786826.2023.2186213
124. B. Taşkıran Kandeğer, "Mass photokeratitis in coronary angiography medical staff following exposure to unprotected ultraviolet light", Journal Français d'Ophtalmologie 44(5), pg. e317, (2021); doi:10.1016/j.jfo.2020.08.011
125. Alberto Boretti, Bimal Banik, Stefania Castelletto, "Use of Ultraviolet Blood Irradiation Against Viral Infections", Clinical Reviews in Allergy & Immunology 60(2), pg. 259, (2021); doi:10.1007/s12016-020-08811-8
126. Byeong-Min Song, Gun-Hee Lee, Hee-Jeong Han et al., "Ultraviolet-C light at 222 nm has a high disinfecting spectrum in environments contaminated by infectious pathogens, including SARS-CoV-2", PLOS ONE 18(11), pg. e0294427, (2023); doi:10.1371/journal.pone.0294427
127. Andrew G. Buchan, Liang Yang, Kirk D. Atkinson, "Predicting airborne coronavirus inactivation by far-UVC in populated rooms using a high-fidelity coupled radiation-CFD model", Scientific Reports 10(1), pg. , (2020); doi:10.1038/s41598-020-76597-y
128. K. Konishi, I. Akimoto, J. Isberg et al., "Diffusion-related lifetime and quantum efficiency of excitons in diamond", Physical Review B 102(19), pg. , (2020); doi:10.1103/PhysRevB.102.195204
129. Joohyoung Lee, Sung Tae Yoo, Byeongchan So et al., "Large-area far ultraviolet-C emission of Al0.73Ga0.27N/AlN multiple quantum wells using carbon nanotube based cold cathode electron-beam pumping", Thin Solid Films 711, pg. 138292, (2020); doi:10.1016/j.tsf.2020.138292
130. Kenjiro Uesugi, Ryota Akaike, Shuhei Ichikawa et al., "230 nm wavelength range far-UVC LED with low Al-composition differentiation between well and barrier layers of MQWs", Applied Physics Express 17(4), pg. 042008, (2024); doi:10.35848/1882-0786/ad3e48
131. Syeda Wageeha Shakir, Muhammad Usman, Usman Habib et al., "221 nm far ultraviolet-C AlGaN laser diode with optimized p-AlN electron blocking epilayers", Optical and Quantum Electronics 56(12), pg. , (2024); doi:10.1007/s11082-024-07788-4
132. Sudhanshu Pandey, Aku Karvinen, Jani Hakala, "Unveiling the potential of far-UVC: Assessing irradiance and dose-response for microbial inactivation in UV systems", International Journal of Thermofluids 27, pg. 101187, (2025); doi:10.1016/j.ijft.2025.101187
133. Peiyong Ning, Yanzhen Han, Yang Liu et al., "Study on disinfection effect of a 222-nm UVC excimer lamp on object surface", AMB Express 13(1), pg. , (2023); doi:10.1186/s13568-023-01611-1
134. Jun Nishikawa, Yuta Tamura, Tomohiro Fujii et al., "Far-Ultraviolet Light at 222 nm Affects Membrane Integrity in Monolayered DLD1 Colon Cancer Cells", International Journal of Molecular Sciences 25(13), pg. 7051, (2024); doi:10.3390/ijms25137051
135. Kouji Narita, Krisana Asano, Kyosuke Yamane et al., "Effect of ultraviolet C emitted from KrCl excimer lamp with or without bandpass filter to mouse epidermis", PLOS ONE 17(5), pg. e0267957, (2022); doi:10.1371/journal.pone.0267957
136. Jurate Gruode, Arvydas Martinkenas, Mindaugas Kurmis et al., "RT-qPCR-Based Assessment of the Efficacy of 222 nm UVC Irradiation in Reducing SARS-CoV-2 Surface Contamination", Sensors 23(13), pg. 6129, (2023); doi:10.3390/s23136129
137. Steven C. Hill, David C. Doughty, Daniel W. Mackowski, "Inactivation of virions in host particles in air using 222- and 254-nm UV: Dependence of shielding on particle size and UV wavelength", Aerosol Science and Technology 58(5), pg. 512, (2024); doi:10.1080/02786826.2024.2314614
138. Paula Zwicker, Johannes Schleusener, Silke B. Lohan et al., "Application of 233 nm far-UVC LEDs for eradication of MRSA and MSSA and risk assessment on skin models", Scientific Reports 12(1), pg. , (2022); doi:10.1038/s41598-022-06397-z
139. Yiyu Ou, Paul Michael Petersen, "Application of ultraviolet light sources for in vivo disinfection", Japanese Journal of Applied Physics 60(10), pg. 100501, (2021); doi:10.35848/1347-4065/ac1f47
140. María Olimpia Paz Alvarenga, Sirley Raiane Mamede Veloso, Ana Luisa Cassiano Alves Bezerra et al., "COVID-19 outbreak: Should dental and medical practices consider uv-c technology to enhance disinfection on surfaces? – A systematic review", Journal of Photochemistry and Photobiology 9, pg. 100096, (2022); doi:10.1016/j.jpap.2021.100096
141. Monthanat Ploydaeng, Natta Rajatanavin, Ploysyne Rattanakaemakorn, "UV‐C light: A powerful technique for inactivating microorganisms and the related side effects to the skin", Photodermatology, Photoimmunology & Photomedicine 37(1), pg. 12, (2021); doi:10.1111/phpp.12605
142. Sundo JUNG, "Evaluation of 222 nm Ultraviolet C Bactericidal Efficacy on Bacterial Isolates from Broiler Farms", Korean Journal of Clinical Laboratory Science 56(4), pg. 367, (2024); doi:10.15324/kjcls.2024.56.4.367
143. Giovanni Romano, Giacomo Insero, Santi Nonell Marrugat et al., "Innovative light sources for phototherapy", Biomolecular Concepts 13(1), pg. 256, (2022); doi:10.1515/bmc-2022-0020
144. Thanuri Navarathna, Chetan Jinadatha, Brandon A. Corona et al., "Efficacy of a filtered far-UVC handheld disinfection device in reducing the microbial bioburden of hospital surfaces", American Journal of Infection Control 51(12), pg. 1406, (2023); doi:10.1016/j.ajic.2023.05.003
145. Monika Monika, Eeshan Ajay Damle, Kiran Kondabagil et al., "Comparative study of inactivation efficacy of far‐UVC (222 nm) and germicidal UVC (254 nm) radiation against virus‐laden aerosols of artificial human saliva", Photochemistry and Photobiology , pg. , (2025); doi:10.1111/php.14062
146. Chukuka S. Enwemeka, Terrance L. Baker, Violet V. Bumah, "The role of UV and blue light in photo-eradication of microorganisms", Journal of Photochemistry and Photobiology 8, pg. 100064, (2021); doi:10.1016/j.jpap.2021.100064
147. Leili Abkar, Karl Zimmermann, Fuhar Dixit et al., "COVID-19 pandemic lesson learned- critical parameters and research needs for UVC inactivation of viral aerosols", Journal of Hazardous Materials Advances 8, pg. 100183, (2022); doi:10.1016/j.hazadv.2022.100183
148. Chukuka S. Enwemeka, Violet V. Bumah, John L. Mokili, "Pulsed blue light inactivates two strains of human coronavirus", Journal of Photochemistry and Photobiology B: Biology 222, pg. 112282, (2021); doi:10.1016/j.jphotobiol.2021.112282
149. Nanda Kumar Reddy Nallabala, Vasudeva Reddy Minnam Reddy, V.R. Singh et al., "Enhanced photoresponse performance in GaN based symmetric type MSM ultraviolet-A and MIS ultraviolet-A to C photodetectors", Sensors and Actuators A: Physical 339, pg. 113502, (2022); doi:10.1016/j.sna.2022.113502
150. Y. H. Lu, R. X. Wang, H. L. Liu et al., "Evaluating the Performance of UV Disinfection across the 222–365 nm Spectrum against Aerosolized Bacteria and Viruses", Environmental Science & Technology 58(16), pg. 6868, (2024); doi:10.1021/acs.est.3c08675
151. Aurosikha Das, Monika Monika, Ambarish Kunwar, "Photochemical Action of Far‐UVC Radiation (222 nm) in Wastewater Treatment and Indoor Air Disinfection", Chemistry – An Asian Journal 19(23), pg. , (2024); doi:10.1002/asia.202400769
152. Rolf Bergman, David Brenner, Manuela Buonanno et al., "Air Disinfection with Germicidal Ultraviolet: For this Pandemic and the Next", Photochemistry and Photobiology 97(3), pg. 464, (2021); doi:10.1111/php.13424
153. Turgut Felek, Ahmet Kürklü, Hüseyin Basim, "Development of a UVC application machine for managing plant diseases in soilless greenhouse crop production", Scientific Reports 15(1), pg. , (2025); doi:10.1038/s41598-025-94063-5
154. Trailokya Bhattarai, Abasifreke Ebong, Mohammad Raja, "A Review of Light-Emitting Diodes and Ultraviolet Light-Emitting Diodes and Their Applications", Photonics 11(6), pg. 491, (2024); doi:10.3390/photonics11060491
155. Harpreet Pangli, Anthony Papp, "The relation between positive screening results and MRSA infections in burn patients", Burns 45(7), pg. 1585, (2019); doi:10.1016/j.burns.2019.02.023
156. J. Muñoz-Fernández, Y. Del Rosal, F. Álvarez-Gómez et al., "Selection of LED lighting systems for the reduction of the biodeterioration of speleothems induced by photosynthetic biofilms in the Nerja Cave (Malaga, Spain)", Journal of Photochemistry and Photobiology B: Biology 217, pg. 112155, (2021); doi:10.1016/j.jphotobiol.2021.112155
157. Min Zhao, Yanyan Liu, Mingbao Feng et al., "Degradation mechanisms of antibiotics in UV222/H2O2 and UV222/persulfate systems: Dual roles of inorganic anions", Chemical Engineering Journal 489, pg. 151371, (2024); doi:10.1016/j.cej.2024.151371
158. Zhenhui Jin, Yi-Cheng Wang, "Mitigating fungal contamination of cereals: The efficacy of microplasma-based far-UVC lamps against Aspergillus flavus and Fusarium graminearum", Food Research International 190, pg. 114550, (2024); doi:10.1016/j.foodres.2024.114550
159. Zhe Sun, Mengkai Li, Wentao Li et al., "A review of the fluence determination methods for UV reactors: Ensuring the reliability of UV disinfection", Chemosphere 286, pg. 131488, (2022); doi:10.1016/j.chemosphere.2021.131488
160. Minghao Wang, Alvin C.K. Lai, "Experimental study on enhancing single-pass air disinfection efficacy for portable disinfection systems with different Far-UVC sources", Building and Environment 261, pg. 111742, (2024); doi:10.1016/j.buildenv.2024.111742
161. Yoichiro Neo, Gai Hashimoto, Rei Koike et al., "Solid‐State Far‐Ultraviolet C Light Sources for the Disinfection of Pathogenic Microorganisms Using Graphene Nanostructure Field Emitters", Global Challenges 7(4), pg. , (2023); doi:10.1002/gch2.202200236
162. Marcel Schilling, Jan Ruschel, Hyun Kyong Cho et al., "Effect of quantum well number on the efficiency and degradation of AlGaN-based far-UVC LEDs emitting at 233 nm and 226 nm", Semiconductor Science and Technology 40(4), pg. 045004, (2025); doi:10.1088/1361-6641/adbf40
163. Soichiro Fukuda, Jun Nishikawa, Yuki Kobayashi et al., "The bactericidal effect of far-UVC on ESBL-producing Escherichia coli", American Journal of Infection Control 50(11), pg. 1268, (2022); doi:10.1016/j.ajic.2022.04.012
164. Kaoru Okamoto Yoshiyama, Norihiko L. Okamoto, Jun Hidema et al., "222 nm far-UVC efficiently introduces nerve damage in Caenorhabditis elegans", PLOS ONE 18(1), pg. e0281162, (2023); doi:10.1371/journal.pone.0281162
165. Pallabi Pramanik, Sayantani Sen, Chirantan Singha et al., "Deep-UV wavelength-selective photodetectors based on lateral transport in AlGaN/AlN quantum well and dot-in-well structures", AIP Advances 11(8), pg. , (2021); doi:10.1063/5.0059744
166. Sebastian Freeman, Karen Kibler, Zachary Lipsky et al., "Systematic evaluating and modeling of SARS-CoV-2 UVC disinfection", Scientific Reports 12(1), pg. , (2022); doi:10.1038/s41598-022-09930-2
167. K. Narita, K. Asano, K. Naito et al., "Ultraviolet C light with wavelength of 222 nm inactivates a wide spectrum of microbial pathogens", Journal of Hospital Infection 105(3), pg. 459, (2020); doi:10.1016/j.jhin.2020.03.030
168. Paul Donald Forbes, Curtis A. Cole, Frank deGruijl, "Origins and Evolution of Photocarcinogenesis Action Spectra, Including Germicidal UVC†", Photochemistry and Photobiology 97(3), pg. 477, (2021); doi:10.1111/php.13371
169. Peiyang Li, Jacek Koziel, Jeffrey Zimmerman et al., "Mitigation of Airborne PRRSV Transmission with UV Light Treatment: Proof-of-Concept", Agriculture 11(3), pg. 259, (2021); doi:10.3390/agriculture11030259
170. Olivia J. Jenks, Zhe Peng, Melinda K. Schueneman et al., "Effects of 222 nm Germicidal Ultraviolet Light on Aerosol and VOC Formation from Limonene", ACS ES&T Air 1(7), pg. 725, (2024); doi:10.1021/acsestair.4c00065
171. Adedayo Ayodeji Lanrewaju, Abimbola Motunrayo Enitan-Folami, Saheed Sabiu et al., "A review on disinfection methods for inactivation of waterborne viruses", Frontiers in Microbiology 13, pg. , (2022); doi:10.3389/fmicb.2022.991856
172. Yukari Fukutoku, Hidezumi Kikuchi, Kentaro Hoshi et al., "The new 222‐nm far ultraviolet‐C lowers bacterial contamination to endoscopists during esophagogastroduodenoscopy", DEN Open 4(1), pg. , (2024); doi:10.1002/deo2.292
173. Yue Pan, Tongling Xia, Kangqi Guo et al., "Predicting spatial distribution of ultraviolet irradiance and disinfection of exhaled bioaerosols with a modified irradiance model", Building and Environment 228, pg. 109792, (2023); doi:10.1016/j.buildenv.2022.109792
174. Yongyi Wang, Ben Ma, Chun He et al., "Nitrate Protects Microorganisms and Promotes Formation of Toxic Nitrogenous Byproducts during Water Disinfection by Far-UVC Radiation", Environmental Science & Technology 57(24), pg. 9064, (2023); doi:10.1021/acs.est.3c00824
175. Ben Ma, Patricia M. Gundy, Charles P. Gerba et al., "UV Inactivation of SARS-CoV-2 across the UVC Spectrum: KrCl* Excimer, Mercury-Vapor, and Light-Emitting-Diode (LED) Sources", Applied and Environmental Microbiology 87(22), pg. , (2021); doi:10.1128/AEM.01532-21
176. Allison J. Matthews, Hannah M. Rowe, Jason W. Rosch et al., "A Tn-seq Screen of Streptococcus pneumoniae Uncovers DNA Repair as the Major Pathway for Desiccation Tolerance and Transmission", Infection and Immunity 89(8), pg. , (2021); doi:10.1128/IAI.00713-20
177. Eric J. Stanton, Peter Tønning, Emil Z. Ulsig et al., "Continuous-wave second-harmonic generation in the far-UVC pumped by a blue laser diode", Scientific Reports 14(1), pg. , (2024); doi:10.1038/s41598-024-53144-7
178. Eric Bender, "Disinfecting the air with far-ultraviolet light", Nature 610(7933), pg. S46, (2022); doi:10.1038/d41586-022-03360-w
179. Wei‐Hung Chiang, Davide Mariotti, R. Mohan Sankaran et al., "Microplasmas for Advanced Materials and Devices", Advanced Materials 32(18), pg. , (2020); doi:10.1002/adma.201905508
180. Claudia Sicher, Nevin Opitz, Pia Elen Becker et al., "Efficacy of 233 nm LED far UV-C-radiation against clinically relevant bacterial strains in the phase 2/ step 2 in vitro test on basis of EN 14561 and on an epidermis cell model", Microbes and Infection 26(4), pg. 105320, (2024); doi:10.1016/j.micinf.2024.105320
181. Sunday S. Nunayon, Kwok-Wai Mui, Ling-Tim Wong, "Mapping the knowledge pattern of ultraviolet germicidal irradiation for cleaner indoor air through the lens of bibliometrics", Journal of Cleaner Production 391, pg. 135974, (2023); doi:10.1016/j.jclepro.2023.135974
182. Sung Tae Yoo, Kyu Chang Park, "Sapphire Wafer for 226 nm Far UVC Generation with Carbon Nanotube-Based Cold Cathode Electron Beam (C-Beam) Irradiation", ACS Omega 5(25), pg. 15601, (2020); doi:10.1021/acsomega.0c01824
183. Keyvan Khosh Abady, Negar Karpourazar, Arjun Krishnamoorthi et al., "Spectroscopic analysis of bacterial photoreactivation", Photochemistry and Photobiology 101(2), pg. 494, (2025); doi:10.1111/php.14019
184. Manuela Buonanno, Raabia Hashmi, Camryn E. Petersen et al., "Wavelength-dependent DNA damage induced by single wavelengths of UV-C radiation (215 to 255 nm) in a human cornea model", Scientific Reports 15(1), pg. , (2025); doi:10.1038/s41598-024-84196-4
185. Vicente M. Gómez-López, Eric Jubinville, María Isabel Rodríguez-López et al., "Inactivation of Foodborne Viruses by UV Light: A Review", Foods 10(12), pg. 3141, (2021); doi:10.3390/foods10123141
186. Dana Mackenzie, "Ultraviolet Light Fights New Virus", Engineering 6(8), pg. 851, (2020); doi:10.1016/j.eng.2020.06.009
187. Wojciech Janisiewicz, Fumiomi Takeda, Breyn Evans et al., "Potential of far ultraviolet (UV) 222 nm light for management of strawberry fungal pathogens", Crop Protection 150, pg. 105791, (2021); doi:10.1016/j.cropro.2021.105791
188. David Welch, Marilena Aquino de Muro, Manuela Buonanno et al., "Wavelength‐dependent DNA Photodamage in a 3‐D human Skin Model over the Far‐UVC and Germicidal UVC Wavelength Ranges from 215 to 255 nm", Photochemistry and Photobiology 98(5), pg. 1167, (2022); doi:10.1111/php.13602
189. Tomoaki Nambu, Taketo Yano, Soshi Umeda et al., "DUV coherent light emission from ultracompact microcavity wavelength conversion device", Optics Express 30(11), pg. 18628, (2022); doi:10.1364/OE.457538
190. Kiran Ahlawat, Ramavtar Jangra, Ambar Ish et al., "A dielectric barrier discharge based low pressure narrow band far UV-C 222 nm excimer lamp and its efficiency analysis", Physica Scripta 99(2), pg. 025018, (2024); doi:10.1088/1402-4896/ad1cb9
191. Candida Duarte Manuel, Kalina Samardjieva, "Culturable Bioaerosols Assessment in a Waste-Sorting Plant and UV-C Decontamination", Sustainability 16(10), pg. 4299, (2024); doi:10.3390/su16104299
192. Wenjie Huang, Yue Pan, Yiding Zhou et al., "Optimal location design for multiple Far-UVC lamps to enhance indoor bioaerosol disinfection by CFD-based Bayesian optimization", Building and Environment 264, pg. 111948, (2024); doi:10.1016/j.buildenv.2024.111948
193. Vijay Kumar Sharma, Hilmi Volkan Demir, "Bright Future of Deep-Ultraviolet Photonics: Emerging UVC Chip-Scale Light-Source Technology Platforms, Benchmarking, Challenges, and Outlook for UV Disinfection", ACS Photonics 9(5), pg. 1513, (2022); doi:10.1021/acsphotonics.2c00041
194. Tim Kolbe, Hyun Kyong Cho, Sylvia Hagedorn et al., "226 nm Far‐Ultraviolet‐C Light Emitting Diodes with an Emission Power over 2 mW", physica status solidi (RRL) – Rapid Research Letters 18(11), pg. , (2024); doi:10.1002/pssr.202400092
195. F. Takeda, W. Janisiewicz, B. Short et al., "Ultraviolet-C (UV-C) for disease and pest management and automating UV-C delivery technology for strawberry", Acta Horticulturae (1309), pg. 533, (2021); doi:10.17660/ActaHortic.2021.1309.76
196. Kimberly A. Morio, Robert H. Sternowski, Kim A. Brogden, "Using ultraviolet (UV) light emitting diodes (LED) to create sterile root canals and to treat endodontic infections", Current Opinion in Biomedical Engineering 23, pg. 100397, (2022); doi:10.1016/j.cobme.2022.100397
197. Tomoaki Fukui, Takahiro Niikura, Takahiro Oda et al., "Exploratory clinical trial on the safety and bactericidal effect of 222-nm ultraviolet C irradiation in healthy humans", PLOS ONE 15(8), pg. e0235948, (2020); doi:10.1371/journal.pone.0235948
198. Luke Horton, Angeli Eloise Torres, Shanthi Narla et al., "Spectrum of virucidal activity from ultraviolet to infrared radiation", Photochemical & Photobiological Sciences 19(10), pg. 1262, (2020); doi:10.1039/d0pp00221f
199. Momo Otake, Kaoru Okamoto Yoshiyama, Hiroko Yamaguchi et al., "222 nm ultraviolet radiation C causes more severe damage to guard cells and epidermal cells of Arabidopsis plants than does 254 nm ultraviolet radiation", Photochemical & Photobiological Sciences 20(12), pg. 1675, (2021); doi:10.1007/s43630-021-00123-w
200. Martin Guttmann, Neysha Lobo-Ploch, Heiko Gundlach et al., "Spectrally pure far-UVC emission from AlGaN-based LEDs with dielectric band pass filters", Journal of Physics D: Applied Physics 55(20), pg. 205105, (2022); doi:10.1088/1361-6463/ac5145
201. Cecilia Vera, Fiorella Tulli, Claudio D. Borsarelli, "Photosensitization With Supramolecular Arrays for Enhanced Antimicrobial Photodynamic Treatments", Frontiers in Bioengineering and Biotechnology 9, pg. , (2021); doi:10.3389/fbioe.2021.655370
202. David Welch, Norman J. Kleiman, Peter C. Arden et al., "No Evidence of Induced Skin Cancer or Other Skin Abnormalities after Long‐Term (66 week) Chronic Exposure to 222‐nm Far‐UVC Radiation", Photochemistry and Photobiology 99(1), pg. 168, (2023); doi:10.1111/php.13656
203. Jinchai Li, Na Gao, Duanjun Cai et al., "Multiple fields manipulation on nitride material structures in ultraviolet light-emitting diodes", Light: Science & Applications 10(1), pg. , (2021); doi:10.1038/s41377-021-00563-0
204. Ewan Eadie, Isla M. R. Barnard, Sally H. Ibbotson et al., "Extreme Exposure to Filtered Far‐UVC: A Case Study†", Photochemistry and Photobiology 97(3), pg. 527, (2021); doi:10.1111/php.13385
205. Shubham Srivastava, Xingwang Zhao, Ati Manay et al., "Effective ventilation and air disinfection system for reducing coronavirus disease 2019 (COVID-19) infection risk in office buildings", Sustainable Cities and Society 75, pg. 103408, (2021); doi:10.1016/j.scs.2021.103408
206. David Welch, Manuela Buonanno, Igor Shuryak et al., "Effect of far ultraviolet light emitted from an optical diffuser on methicillin-resistant Staphylococcus aureus in vitro", PLOS ONE 13(8), pg. e0202275, (2018); doi:10.1371/journal.pone.0202275
207. Anne Sophie Rufyikiri, Rebecca Martinez, Philip W. Addo et al., "Germicidal efficacy of continuous and pulsed ultraviolet-C radiation on pathogen models and SARS-CoV-2", Photochemical & Photobiological Sciences 23(2), pg. 339, (2024); doi:10.1007/s43630-023-00521-2
208. Rajappan Radhakrishnan Sumathi, "Review—Status and Challenges in Hetero-epitaxial Growth Approach for Large Diameter AlN Single Crystalline Substrates", ECS Journal of Solid State Science and Technology 10(3), pg. 035001, (2021); doi:10.1149/2162-8777/abe6f5
209. Yeon Soo Kim, A Jeong You, Sunho Lee et al., "The potential of 222-nm wavelength ultraviolet light for medical applications: a review", Medical Lasers 13(1), pg. 12, (2024); doi:10.25289/ML.24.009
210. David Welch, Henry M. Spotnitz, David J. Brenner, "Measurement of UV Emission from a Diffusing Optical Fiber Using Radiochromic Film", Photochemistry and Photobiology 93(6), pg. 1509, (2017); doi:10.1111/php.12798
211. Cao-Sang Truong, Palaniyandi Muthukutty, Ho Kyung Jang et al., "Filter-Free, Harmless, and Single-Wavelength Far UV-C Germicidal Light for Reducing Airborne Pathogenic Viral Infection", Viruses 15(7), pg. 1463, (2023); doi:10.3390/v15071463
212. Kazunobu Sugihara, Sachiko Kaidzu, Masahiro Sasaki et al., "One‐year Ocular Safety Observation of Workers and Estimations of Microorganism Inactivation Efficacy in the Room Irradiated with 222‐nm Far Ultraviolet‐C Lamps", Photochemistry and Photobiology 99(3), pg. 967, (2023); doi:10.1111/php.13710
213. Manuela Buonanno, David Welch, David J. Brenner, "Exposure of Human Skin Models to KrCl Excimer Lamps: The Impact of Optical Filtering†", Photochemistry and Photobiology 97(3), pg. 517, (2021); doi:10.1111/php.13383
214. Frans Graeffe, Yuanyuan Luo, Yishuo Guo et al., "Unwanted Indoor Air Quality Effects from Using Ultraviolet C Lamps for Disinfection", Environmental Science & Technology Letters 10(2), pg. 172, (2023); doi:10.1021/acs.estlett.2c00807
215. Jun-Won Kang, Dong-Hyun Kang, "Increased Resistance ofSalmonella entericaSerovar Typhimurium andEscherichia coliO157:H7 to 222-Nanometer Krypton-Chlorine Excilamp Treatment by Acid Adaptation", Applied and Environmental Microbiology 85(6), pg. , (2019); doi:10.1128/AEM.02221-18
216. Franco Fusi, Giovanni Romano, "Shedding light on the restart", Physica Medica 77, pg. 18, (2020); doi:10.1016/j.ejmp.2020.07.018
217. Manuela Buonanno, Norman J. Kleiman, David Welch et al., "222 nm far-UVC light markedly reduces the level of infectious airborne virus in an occupied room", Scientific Reports 14(1), pg. , (2024); doi:10.1038/s41598-024-57441-z
218. Hyeokjin Kwon, Myeongguk Jeong, Shinjee Go et al., "Colonization of Pathogens in Earphones and Observation of Effective Sterilization Methods and Cycles", Biomedical Science Letters 28(3), pg. 186, (2022); doi:10.15616/BSL.2022.28.3.186
219. Kouji Narita, Krisana Asano, Yukihiro Morimoto et al., "Chronic irradiation with 222-nm UVC light induces neither DNA damage nor epidermal lesions in mouse skin, even at high doses", PLOS ONE 13(7), pg. e0201259, (2018); doi:10.1371/journal.pone.0201259
220. Liqing Zang, Yasuhito Shimada, Hideto Miyake et al., "Transcriptome analysis of molecular response to UVC irradiation in zebrafish embryos", Ecotoxicology and Environmental Safety 231, pg. 113211, (2022); doi:10.1016/j.ecoenv.2022.113211
221. Abbie Ross, Ewan Eadie, Sally H Ibbotson et al., "Public acceptance of the use of Far-UVC for virus inactivation: Challenges and opportunities", IPEM-Translation 5, pg. 100017, (2023); doi:10.1016/j.ipemt.2023.100017
222. Hiroki Kitagawa, Toshihito Nomura, Tanuza Nazmul et al., "Effectiveness of 222-nm ultraviolet light on disinfecting SARS-CoV-2 surface contamination", American Journal of Infection Control 49(3), pg. 299, (2021); doi:10.1016/j.ajic.2020.08.022
223. Elroei David, Alina Karabchevsky, Marina Wolfson et al., "Pulsed Ultraviolet C as a Potential Treatment for COVID-19", Fibrosis 1(1), pg. 10002, (2023); doi:10.35534/fibrosis.2023.10002
224. Wenjie Huang, Kangqi Guo, Yue Pan et al., "Enhancing the effectiveness of bioaerosol disinfection in indoor environments by optimizing far-UVC lamp locations based on Markov chain model", Science of The Total Environment 912, pg. 168803, (2024); doi:10.1016/j.scitotenv.2023.168803
225. Emma M. Payne, Bryan Liu, Lauren Mullen et al., "UV 222 nm Emission from KrCl* Excimer Lamps Greatly Improves Advanced Oxidation Performance in Water Treatment", Environmental Science & Technology Letters 9(9), pg. 779, (2022); doi:10.1021/acs.estlett.2c00472
226. Leon G Leanse, Carolina dos Anjos, João Felipe Besegato et al., "Shedding UVC light on Covid-19 to protect dentistry staff and patients", Laser Physics Letters 18(8), pg. 085602, (2021); doi:10.1088/1612-202X/ac0bc5
227. Peiyang Li, Jacek A. Koziel, Nubia Macedo et al., "Evaluation of an Air Cleaning Device Equipped with Filtration and UV: Comparison of Removal Efficiency on Particulate Matter and Viable Airborne Bacteria in the Inlet and Treated Air", International Journal of Environmental Research and Public Health 19(23), pg. 16135, (2022); doi:10.3390/ijerph192316135
228. Douglas W. Challener, Aaron J. Tande, Carolina Koutras et al., "Evaluation of germicidal ultraviolet-C disinfection in a real-world outpatient health care environment", American Journal of Infection Control 52(9), pg. 1030, (2024); doi:10.1016/j.ajic.2024.05.014
229. Alexandra Ibanez, Mathieu Leroux, Nikita Nikitskiy et al., "The Influence of Alloy Disorder Effects on the Anisotropy of Emission Diagrams in (Al,Ga)N Quantum Wells Embedded into AlN Barriers", physica status solidi (b) 261(8), pg. , (2024); doi:10.1002/pssb.202400215
230. Sergi Cuesta, Anjali Harikumar, Eva Monroy, "Electron beam pumped light emitting devices", Journal of Physics D: Applied Physics 55(27), pg. 273003, (2022); doi:10.1088/1361-6463/ac6237
231. Jun Nishikawa, Tomohiro Fujii, Soichiro Fukuda et al., "Far-ultraviolet irradiation at 222 nm destroys and sterilizes the biofilms formed by periodontitis pathogens", Journal of Microbiology, Immunology and Infection 57(4), pg. 533, (2024); doi:10.1016/j.jmii.2024.05.005
232. Chaofan Lin, Junzhou He, Zhijian Liu et al., "Effectiveness, safety, and challenges of UVC irradiation in indoor environments: A decade of review and prospects", Building and Environment 276, pg. 112868, (2025); doi:10.1016/j.buildenv.2025.112868
233. Y.H. Lu, H. Wu, H.H. Zhang et al., "Synergistic disinfection of aerosolized bacteria and bacteriophage by far-UVC (222-nm) and negative air ions", Journal of Hazardous Materials 441, pg. 129876, (2023); doi:10.1016/j.jhazmat.2022.129876
234. Loris Busch, Marius Kröger, Johannes Schleusener et al., "Evaluation of DNA lesions and radicals generated by a 233 nm far-UVC LED in superficial ex vivo skin wounds", Journal of Photochemistry and Photobiology B: Biology 245, pg. 112757, (2023); doi:10.1016/j.jphotobiol.2023.112757
235. Johannes Glaab, Neysha Lobo-Ploch, Hyun Kyong Cho et al., "Skin tolerant inactivation of multiresistant pathogens using far-UVC LEDs", Scientific Reports 11(1), pg. , (2021); doi:10.1038/s41598-021-94070-2
236. Antonia Kowalewski, Nancy R. Forde, "Fluence-dependent degradation of fibrillar type I collagen by 222 nm far-UVC radiation", PLOS ONE 19(1), pg. e0292298, (2024); doi:10.1371/journal.pone.0292298
237. Ishaan Mehta, Hao-Ya Hsueh, Nikolaos Kourtzanidis et al., "Far-UVC Disinfection with Robotic Mobile Manipulator", 2022 International Symposium on Medical Robotics (ISMR), 1, (2022); doi:10.1109/ISMR48347.2022.9807593
238. David Welch, Henry M. Spotnitz, David J. Brenner et al., "Far-UVC light applications: sterilization of MRSA on a surface and inactivation of aerosolized influenza virus", Light-Based Diagnosis and Treatment of Infectious Diseases, 60, (2018); doi:10.1117/12.2309424
239. Haixi Luo, Yan-Fei Wang, Caihong Dai et al., "Research on calibration method of 222nm UV radiometer", AOPC 2024: Optoelectronics Testing and Measurement, 12, (2024); doi:10.1117/12.3047103
240. Sandhya Vidyashankar, Gowri Srinivasa, "Low-cost Robot for Autonomous Disinfection of Corridors", 2021 Fifth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), 1737, (2021); doi:10.1109/I-SMAC52330.2021.9640952
241. Pornthip Keangin, Piyawat Chawengwanicha, Saharath Somya et al., "UV-C disinfection of a minibus", Vol. 3236, PROCEEDINGS OF THE 13TH TSME INTERNATIONAL CONFERENCE ON MECHANICAL ENGINEERING 2023, 060002, (2024); doi:10.1063/5.0240107
242. Trailokya Bhattarai, Abasifreke Ebong, M. Yasin Akhtar Raja et al., "Advancements in 275 nm UV-LED Technology for Deactivation of Bacteriophages, Phi6 and MS2", 2023 IEEE 20th International Conference on Smart Communities: Improving Quality of Life using AI, Robotics and IoT (HONET), 120, (2023); doi:10.1109/HONET59747.2023.10374888
243. Mengmeng Li, "Study on the inactivation effect of ultraviolet light from multi-irradiance UV-LEDs on bacteria and the underlying damage", Eighteenth National Conference on Laser Technology and Optoelectronics, 19, (2023); doi:10.1117/12.2688485
244. Ion Munteanu, Marina Turcan, Elena Starodub et al., "Ultraviolet C Radiation for Disinfection and Protection Using Periodical Optical Structure for Dental Implant", 2022 E-Health and Bioengineering Conference (EHB), 1, (2022); doi:10.1109/EHB55594.2022.9991449
245. Fernanda Alves, Mariana Mayumiyamashiro Mayumi, Thaila Quatrini Corrêa et al., "Evaluation of far-UVC 222 nm in the decontamination and increase of shelf life of fruits", Photonic Technologies in Plant and Agricultural Science, 22, (2024); doi:10.1117/12.3005885
246. Trailokya Bhattarai, Nita Khanal, Abasifreke Ebong et al., "Solar-Powered UV-LEDs for Microbial Disinfection: Design, Challenges and Applications", 2024 IEEE 21st International Conference on Smart Communities: Improving Quality of Life using AI, Robotics and IoT (HONET), 85, (2024); doi:10.1109/HONET63146.2024.10822966
247. Hana Arisesa, Dadin Mahmudin, Yusuf Nur Wijayanto et al., "Far UV-C Beam Propagation Characterization in Air Medium for Human Friendly Virus Sterilization", 2021 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET), 158, (2021); doi:10.1109/ICRAMET53537.2021.9650499
248. Ryota Akaike, Kenjiro Uesugi, Hiroki Yasunaga et al., "Far-UVC LEDs fabricated on face-to-face annealed sputter-deposited AlN templates", Light-Emitting Devices, Materials, and Applications XXIX, 14, (2025); doi:10.1117/12.3041493
249. Fahim Bin Rahman, Anik Das, Md. Fakwer Uddin Mazumder et al., "Design and Implementation of Surface Disinfection Robot Using UVC Light and Liquid Sanitizer", 2022 International Conference on Innovations in Science, Engineering and Technology (ICISET), 117, (2022); doi:10.1109/ICISET54810.2022.9775838