Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Yannick Poirier, Larry A. DeWerd, François Trompier, Morgane Dos Santos, Ke Sheng, Keith Kunugi, Merriline M. Satyamitra, Andrea L. DiCarlo, Thomas A. Winters
Kayla E. A. Duval, Ethan Aulwes, Rongxiao Zhang, Mahbubur Rahman, M. Ramish Ashraf, Austin Sloop, Jacob Sunnerberg, Benjamin B. Williams, Xu Cao, Petr Bruza, Alireza Kheirollah, Armin Tavakkoli, Lesley A. Jarvis, Philip E. Schaner, Harold M. Swartz, David J. Gladstone, Brian W. Pogue, P. Jack Hoopes
Recent studies suggest ultra-high dose rate radiation treatment (UHDR-RT) reduces normal tissue damage compared to conventional radiation treatment (CONV-RT) at the same dose. In this study, we compared first, the kinetics and degree of skin damage in wild-type C57BL/6 mice, and second, tumor treatment efficacy in GL261 and B16F10 dermal tumor models, at the same UHDR-RT and CONV-RT doses. Flank skin of wild-type mice received UHDR-RT or CONV-RT at 25 Gy and 30 Gy. Normal skin damage was tracked by clinical observation to determine the time to moist desquamation, an endpoint which was verified by histopathology. Tumors were inoculated on the right flank of the mice, then received UHDR-RT or CONV-RT at 1 × 11 Gy, 1 × 15, 1 × 25, 3 × 6 and 3 × 8 Gy, and time to tumor tripling volume was determined. Tumors also received 1 × 11, 1 × 15, 3 × 6 and 3 × 8 Gy doses for assessment of CD8+/CD4+ tumor infiltrate and genetic expression 96 h postirradiation. All irradiations of the mouse tumor or flank skin were performed with megavoltage electron beams (10 MeV, 270 Gy/s for UHDR-RT and 9 MeV, 0.12 Gy/s for CONV-RT) delivered via a clinical linear accelerator. Tumor control was statistically equal for similar doses of UHDR-RT and CONV-RT in B16F10 and GL261 murine tumors. There were variable qualitative differences in genetic expression of immune and cell damage-associated pathways between UHDR and CONV irradiated B16F10 tumors. Compared to CONV-RT, UHDR-RT resulted in an increased latent period to skin desquamation after a single 25 Gy dose (7 days longer). Time to moist skin desquamation did not significantly differ between UHDR-RT and CONV-RT after a 30 Gy dose. The histomorphological characteristics of skin damage were similar for UHDR-RT and CONV-RT. These studies demonstrated similar tumor control responses for equivalent single and fractionated radiation doses, with variable difference in expression of tumor progression and immune related gene pathways. There was a modest UHDR-RT skin sparing effect after a 1 × 25 Gy dose but not after a 1 × 30 Gy dose.
In radiobiology, and throughout translational biology, synergy theories for multi-component agent mixtures use 1-agent dose-effect relations (DERs) to calculate baseline neither synergy nor antagonism mixture DERs. The most used synergy theory, simple effect additivity, is not self-consistent when curvilinear 1-agent DERs are involved, and many alternatives have been suggested. In this paper we present the mathematical aspects of a new alternative, generalized Loewe additivity (GLA). To the best of our knowledge, generalized Loewe additivity is the only synergy theory that can systematically handle mixtures of agents that are malstressors (tend to produce disease) with countermeasures – agents that oppose malstressors and ameliorate malstressor damage. In practice countermeasures are often very important, so generalized Loewe additivity is potentially far-reaching. Our paper is a proof-of-principle preliminary study. Unfortunately, generalized Loewe additivity's scope is restricted, in various unwelcome but perhaps unavoidable ways. Our results illustrate its strengths and its weaknesses. One area where our methodology has potentially important applications is analyzing counter-measure mitigation of galactic cosmic ray damage to astronauts during interplanetary travel.
Given their substantial neutron capture cross-section, extreme hardness, and high chemical and thermal stability, boron-based materials are widely used as building blocks to protect against highly ionizing radiations such as gamma rays and neutrons. Indeed, uncontrolled nuclear radiation exposure can be highly hazardous to radiation workers and the public. In this sense, this work presents an extensive study and experimental evaluation of the nuclear shielding features of hexagonal-boron nitride (h-BN) based nanocomposite, where bisphenol-A based polybenzoxazine (BA-PBz) was used as matrix. The neutron shielding studies were carried out at the nuclear research reactor of Algeria NUR. The surface treatment of h-BN nanoparticles was confirmed by FTIR and XPS techniques. The curing behavior and the degradation phenomena of the nanocomposites were evaluated by DSC-TGA analyses. The distribution of h-BN nanoparticles within the polymer matrix was assessed by TEM and SEM. The results showed that the developed boron nitride-based nanocomposite exhibits intriguing shielding performances and good thermal stability. The DSC-TGA tests exhibit high degradation temperature that reach 279°C. The highest performances were obtained at an h-BN concentration of 7 wt%, where the macroscopic cross was found to be (Σ = 3.844 cm–1) with a screening ratio of (S = 96.12%), equivalent to a mean free path (λ) of 0.138 cm.
During the planned missions to Mars, astronauts will be faced with many potential health hazards including prolonged exposure to space radiation. Ground-based studies have shown that exposure to space radiation impairs the performance of male rats in cognitive flexibility tasks which involve processes that are essential to rapidly and efficiently adapting to different situations. However, there is presently a paucity of information on the effects of space radiation on cognitive flexibility in female rodents. This study has determined the impact that exposure to a low (10 cGy) dose of ions from the simplified 5-ion galactic cosmic ray simulation [ https://www.bnl.gov/nsrl/userguide/SimGCRSim.php (07/2023)] (GCRSim) beam or 250 MeV/n 4He ions has on the ability of female Wistar rats to perform in constrained [attentional set shifting (ATSET)] and unconstrained cognitive flexibility (UCFlex) tasks. Female rats exposed to GCRSim exhibited multiple decrements in ATSET performance. Firstly, GCRSim exposure impaired performance in the compound discrimination (CD) stage of the ATSET task. While the ability of rats to identify the rewarded cue was not compromised, the time the rats required to do so significantly increased. Secondly, both 4He and GCRSim exposure reduced the ability of rats to reach criterion in the compound discrimination reversal (CDR) stage. Approximately 20% of the irradiated rats were unable to complete the CDR task; furthermore, the irradiated rats that did reach criterion took more attempts to do so than did the sham-treated animals. Radiation exposure also altered the magnitude and/or nature of practice effects. A comparison of performance metrics from the pre-screen and post-exposure ATSET task revealed that while the sham-treated rats completed the post-exposure CD stage of the ATSET task in 30% less time than for completion of the pre-screen ATSET task, the irradiated rats took 30–50% longer to do so. Similarly, while sham-treated rats completed the CDR stage in ;10% fewer attempts in the post-exposure task compared to the pre-screen task, in contrast, the 4He- and GCRSim-exposed cohorts took more (;2-fold) attempts to reach criterion in the post-exposure task than in the pre-screen task. In conclusion, this study demonstrates that female rats are susceptible to radiation-induced loss of performance in the constrained ATSET cognitive flexibility task. Moreover, exposure to radiation leads to multiple performance decrements, including loss of practice effects, an increase in anterograde interference and reduced ability or unwillingness to switch attention. Should similar effects occur in humans, astronauts may have a compromised ability to perform complex tasks.
Shannon Martello, Michelle A. Bylicky, Uma Shankavaram, Jared M. May, Sunita Chopra, Mary Sproull, Kevin MK Scott, Molykutty J. Aryankalayil, C. Norman Coleman
Whole- or partial-body exposure to ionizing radiation damages major organ systems, leading to dysfunction on both acute and chronic timescales. Radiation medical countermeasures can mitigate acute damages and may delay chronic effects when delivered within days after exposure. However, in the event of widespread radiation exposure, there will inevitably be scarce resources with limited countermeasures to distribute among the affected population. Radiation biodosimetry is necessary to separate exposed from unexposed victims and determine those who requires the most urgent care. Blood-based, microRNA signatures have great potential for biodosimetry, but the affected population in such a situation will be genetically heterogeneous and have varying miRNA responses to radiation. Thus, there is a need to understand differences in radiation-induced miRNA expression across different genetic backgrounds to develop a robust signature. We used inbred mouse strains C3H/HeJ and BALB/c mice to determine how accurate miRNA in blood would be in developing markers for radiation vs. no radiation, low dose (1 Gy, 2 Gy) vs. high dose (4 Gy, 8 Gy), and high risk (8 Gy) vs. low risk (1 Gy, 2 Gy, 4 Gy). Mice were exposed to whole-body doses of 0 Gy, 1 Gy, 2 Gy, 4 Gy, or 8 Gy of X rays. MiRNA expression changes were identified using NanoString nCounter panels on blood RNA collected 1, 2, 3 or 7 days postirradiation. Overall, C3H/HeJ mice had more differentially expressed miRNAs across all doses and timepoints than BALB/c mice. The highest amount of differential expression occurred at days 2 and 3 postirradiation for both strains. Comparison of C3H/HeJ and BALB/c expression profiles to those previously identified in C57BL/6 mice revealed 12 miRNAs that were commonly expressed across all three strains, only one of which, miR-340-5p, displayed a consistent regulation pattern in all three miRNA data. Notably multiple Let-7 family members predicted high-dose and high-risk radiation exposure (Let-7a, Let-7f, Let-7e, Let-7g, and Let-7d). KEGG pathway analysis demonstrated involvement of these predicted miRNAs in pathways related to: Fatty acid metabolism, Lysine degradation and FoxO signaling. These findings indicate differences in the miRNA response to radiation across various genetic backgrounds, and highlights key similarities, which we exploited to discover miRNAs that predict radiation exposure. Our study demonstrates the need and the utility of including multiple animal strains in developing and validating biodosimetry diagnostic signatures. From this data, we developed highly accurate miRNA signatures capable of predicting exposed and unexposed subjects within a genetically heterogeneous population as quickly as 24 h of exposure to radiation.
Connexin26 (Cx26) plays an important role in ionizing radiation-induced damage, and CC chemokine ligand 27 (CCL27) regulates the skin immune response. However, the relationship between Cx26 and CCL27 in radiation-induced skin damage is unclear. After X-ray irradiation, clonogenic survival and micronucleus formation were assessed in immortalized human keratinocytes (HaCaT). Proteins in the mitogen activated protein kinase (MAPK) signaling pathway and CCL27-related proteins were detected by immunoblotting. HaCaTCx26–/– cells were constructed to verify the effects of Cx26 on CCL27 secretion. A mouse model was established to examine the expression of CCL27 and skin inflammation in vivo. The degree of skin injury induced by 6 MV of X rays was closely related to CCL27. The phosphorylation of ERK, p38 and NF-κB was significantly increased in irradiated cells. The secretion of CCL27 was significantly decreased in HaCaT wild-type cells relative to HaCaTCx26–/– cells. Whereas cell survival fractions decreased, and the micronuclei formation rate increased as a function of increasing X-ray dose in HaCaT cells, the opposite trend occurred in HaCaTCx26–/– cells. Our findings show that Cx26 likely plays a role in the activation of the MAPK and NF-κB/COX-2 signaling pathways and regulates the secretion of CCL27 in keratinocytes after X-ray radiation-induced skin damage.
To investigate the effect of Temozolomide combined with intensity modulated radiation therapy on serum factor, immune function and clinical efficacy in postoperative glioma patients. One hundred twenty-four patients with high-grade glioma admitted to the First Affiliated Hospital of Zhengzhou University were selected and randomly divided into the study group and the control group, with 62 cases in each group. The control group was given intensity modulated radiation therapy alone, and the study group was given Temozolomide combined with intensity modulated radiation therapy. The clinical efficacy, serum factor, immune function and adverse reactions were observed and compared. The overall response rate of the study group was 95.16%, which is higher than 83.87% in the control group, and the differences were significant (P , 0.05); After the treatment, the serum VEGF, EGF and HGF indicators and diverse immune function indicators were superior to those in the control group, and the differences indicated significance (P , 0.05); the incidence of adverse reactions in the study group was 37.10%, which is higher than 25.81% in the control group, but the differences showed no significance (P . 0.05). Temozolomide combined with intensity modulated radiation therapy could improve the level of serum factor in postoperative glioma patients, strengthen the immune function of the patients, and effectively facilitate the clinical comprehensive efficacy without increasing adverse reactions.
High-dose-radiation exposure in a short period of time leads to radiation syndromes characterized by severe acute and delayed organ-specific injury accompanied by elevated organismal morbidity and mortality. Radiation biodosimetry based on gene expression analysis of peripheral blood is a valuable tool to detect exposure to radiation after a radiological/nuclear incident and obtain useful biological information that could predict tissue and organismal injury. However, confounding factors, including chronic inflammation, can potentially obscure the predictive power of the method. GADD45A (Growth arrest and DNA damage-inducible gene a) plays important roles in cell growth control, differentiation, DNA repair, and apoptosis. GADD45Adeficient mice develop an autoimmune disease, similar to human systemic lupus erythematosus, characterized by severe hematological disorders, kidney disease, and premature death. The goal of this study was to elucidate how preexisting inflammation in mice, induced by GADD45A ablation, can affect radiation biodosimetry. We exposed wild-type and GADD45A knockout male C57BL/6J mice to 7 Gy of X rays and 24 h later RNA was isolated from whole blood and subjected to whole genome microarray and gene ontology analyses. Dose reconstruction analysis using a gene signature trained on gene expression data from irradiated wild-type male mice showed accurate reconstruction of either a 0 Gy or 7 Gy dose with root mean square error of ± 1.05 Gy (R^2 = 1.00) in GADD45A knockout mice. Gene ontology analysis revealed that irradiation of both wild-type and GADD45A-null mice led to a significant overrepresentation of pathways associated with morbidity and mortality, as well as organismal cell death. However, based on their z-score, these pathways were predicted to be more significantly overrepresented in GADD45A-null mice, implying that GADD45A deletion may exacerbate the deleterious effects of radiation on blood cells. Numerous immune cell functions and quantities were predicted to be underrepresented in both genotypes; however, differentially expressed genes from irradiated GADD45A knockout mice predicted an increased deterioration in the numbers of T lymphocytes, as well as myeloid cells, compared with wild-type mice. Furthermore, an overrepresentation of genes associated with radiation-induced hematological malignancies was associated with GADD45A knockout mice, whereas hematopoietic and progenitor cell functions were predicted to be downregulated in irradiated GADD45A knockout mice. In conclusion, despite the significant differences in gene expression between wild-type and GADD45A knockout mice, it is still feasible to identify a panel of genes that could accurately distinguish between irradiated and control mice, irrespective of preexisting inflammation status.
Carbon-ion radiotherapy (CIRT) enhanced local control in patients with malignant melanoma. In several in vitro studies, carbon ions (C ions) have been also shown to decrease the metastatic potential of melanoma cells. CXC motif 10 (CXCL10) has been shown to play a crucial role in regulating tumor metastasis and it significantly increase in human embryonic kidney cells after heavy ion irradiations. This study sought to explore the regulatory effect of C ions on melanoma metastasis, emphasizing the role of CXCL10 in this process. To explore the potential regulatory effect of C ions on tumor metastasis in vivo, we developed a lung metastasis mouse model by injecting B16F10 cells into the footpad and subjected all mice to treatment with X rays and C ions. Subsequently, a series of assays, including histopathological analysis, enzyme-linked immunosorbent assay, real-time PCR, and western blotting, were conducted to assess the regulatory effects of C ions on melanoma. Our results showed that mice treated with C ions exhibited significantly less tumor vascularity, enhanced tumor necrosis, alleviated lung metastasis, and experienced longer survival than X-ray irradiated mice. Moreover, VEGF expression in B16F10 cells was significantly reduced by C-ion treatment, which could be alleviated by CXCL10 knockdown in vitro. Further investigations revealed that co-culturing with HUVECs resulted in a significant inhibition of proliferation, migration, and tube formation ability in the C-ion treated group, while the opposite effect was observed in the C-ion treated with si-CXCL10 group. In conclusion, our findings demonstrate that treatment with carbon-ion radiation can suppress angiogenesis and lung metastases in melanoma by specifically targeting CXCL10. These results suggest the potential utility of carbon ions in treating melanoma.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere