Translator Disclaimer
1 April 2008 Assessing the influence of historical factors, contemporary processes, and environmental conditions on the distribution of invasive species
Author Affiliations +

Despite concern over potential detrimental effects of non-native invasive species on human and natural systems, the factors controlling regional distributions of invasive species remain unresolved. Few studies have evaluated the influence of both environmental factors and disturbance history on invasive species distributions, or assessed synthetically the importance of landscape-level disturbances like historical land-use, forest harvesting, and contemporary forest fragmentation. We analyzed vegetation, soils, and recent and historical land-use and landscape context for forests across central and western Massachusetts to identify controls on invasive species distributions. Almost half (49.3%) of 148 randomly selected sites had at least one non-native invasive plant present, and invasive species occurred more frequently on former agricultural sites than in continuous woodlands. We used logistic regression to model the probability of finding the four most common species: Japanese barberry (Berberis thunbergii DC), glossy buckthorn (Rhamnus frangula L.), multiflora rose (Rosa multiflora Thunb. ex Murr.), and oriental bittersweet (Celastrus orbiculata Thunb.). Soil richness was the most important predictor of invasive presence, with rich soils (i.e., lower C:N) being more likely to have these species. The structure of the current forested landscape (i.e., the amount of forest within a 10 km buffer around a site) is also important, with sites that are surrounded by more forest being less likely to have invasives. After accounting for variation in C:N ratios and the structure of the current forested landscape, historical land-use was not a significant predictor of non-native species occurrence; however, C:N ratios may be influenced by historical land-use and by current vegetation, thus complicating interpretations of this edaphic variable. Recent forest harvesting increased the likelihood of invasive occurrence for some but not all species. Overall, our results suggest that regional patterns of invasive plant distributions result from a complex function of edaphic conditions, and present and historical land-uses.

Robert I. McDonald, Glenn Motzkin, and David R. Foster "Assessing the influence of historical factors, contemporary processes, and environmental conditions on the distribution of invasive species," The Journal of the Torrey Botanical Society 135(2), 260-271, (1 April 2008).
Received: 25 January 2008; Published: 1 April 2008

Get copyright permission
Back to Top