Irina P. Panyushkina, Steven W. Leavitt, Eugene W. Domack, Alex C. Wiedenhoeft
Tree-Ring Research 71 (2), 83-94, (1 July 2015) https://doi.org/10.3959/1536-1098-71.2.83
KEYWORDS: paleoflood, Paleohydrology, Riparian forest, U.S. Northeast, Fish Creek, dendrochronology
Glacial deposition and fluvial/lacustrine sedimentation interact over terrains in central New York State to preserve a history of geological and hydrological events as well as hydroclimatic transitions. The lower reach of Fish Creek draining the eastern watershed of Oneida Lake, NY, is an area with prominent wood remains. This study explores a collection of 52 logs encased in organic-rich deposits exposed by bank erosion at three locations along Fish Creek near Sylvan Beach, NY, with respect to radiocarbon ages, species, and the crossdating potential of tree rings. Radiocarbon ages and successful tree-ring crossdating document what we interpret as seven major hydrologic episodes ca. 10 ka (i.e. ca. 10,000 cal yr BP), 7.4 ka, 6.8 ka, 6.4 ka, 5.5 ka, 3.1 ka and 2.2 ka cal BP, during which channel aggradation and tree burial may have been associated with abruptly increased flood frequency and/or high water tables. This pilot study establishes four floating tree-ring records: [1] early Holocene hemlock (Tsuga), mid-Holocene [2] walnut (Juglans sp.) and [3] sycamore (Platanus), and [4] late Holocene elm (Ulmus sp.), with sample sizes of 8–14 series of 55–135 years length. Despite the complexity of distribution of radiocarbon ages at each site, the wealth of well-preserved wood demonstrates great promise for understanding the paleoflood history of the Oneida watershed by documenting the magnitude, location, and timing of floods. Further additional systematic sampling can add and strengthen tree-ring dating and tree-ring based flood records, confirm results, and contribute to the Holocene hydrological history of the region.