Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Field and greenhouse experiments were conducted to evaluate the efficacy and safening of metsulfuron applied with dicamba, 2,4-D, clopyralid, and fluroxypyr with and without nonionic surfactant. Greenhouse data showed that 2,4-D and dicamba, but not fluroxypyr, safened grain sorghum from metsulfuron injury. In the field study, grain sorghum injury from metsulfuron was decreased when tank mixed with 2,4-D or dicamba but not when tank mixed with clopyralid or fluroxypyr. Tank mixes of 2,4-D or dicamba with metsulfuron did not reduce ivyleaf morningglory or velvetleaf control. At 4 wk after treatment (WAT), ivyleaf morningglory was controlled 95, 84, 59, and 91%, and velvetleaf was controlled 88, 82, 78, and 95% when metsulfuron was tank mixed with 2,4-D, dicamba, clopyralid, and fluroxypyr, respectively. In a separate field study, differential grain sorghum hybrid responses to a tank mix of metsulfuron 2,4-D was examined. In general, a tank mix of metsulfuron and 2,4-D caused visible injury to all hybrids at 1 and 2 WAT, but grain sorghum recovered and most hybrids appeared normal at the end of the growing season. Differential hybrid responses to metsulfuron 2,4-D were observed at 1 and 2 WAT in 2000 and 4 WAT in 2001. The most susceptible hybrid was ‘Mycogen 1506’, and the least susceptible hybrids were ‘NK KS-310’ and ‘Pioneer 87G57’. This study demonstrates the potential for 2,4-D or dicamba to safen metsulfuron injury of sorghum without compromising weed control.
Fifty-three fungal strains belonging to 15 mainly Fusarium species were isolated from branched broomrape plants. Their virulence was assessed using a plastic bag system, and they were grown both in liquid and on solid media, extracted, and the extracts were chemically analyzed and biologically assayed to find new metabolites that inhibit germination of branched broomrape to estimate the production of fusaric and dehydrofusaric acids by Fusarium strains and evaluate their possible involvement as virulence factors and their practical use as biomarkers to make the selection of potential mycoherbicides easier, and to ascertain whether toxins affected mammals. Nine strains proved to be highly virulent and 18 strains produced fusaric and dehydrofusaric acid at concentrations from 4 to 165, and from 9 to 204 mg L−1 respectively. Fifteen extracts from solid cultures caused high mortality when assayed on brine shrimps. Five extracts from liquid cultures caused total inhibition of seed germination. Some strains may be considered as sources of new biocontrol agents but virulence was not always positively correlated to the production of phytotoxic compounds.
Nomenclature: Branched broomrape, Orobanche ramosa L.; Fusarium acuminatum Ell. & Ev.; F. camptoceras Wollenw. & Reinking; F. chlamydosporum Wollenw. & Reinking; F. compactum sensu Gordon; F. equiseti (Corda) Sacc.; F. nygamai Burgess & Trimboli; F. oxysporum Schlecht.; F. proliferatum Matsushima (Nirenberg); F. sambucinum Fuckel sensu stricto; F. solani (Mart.) Appel & Wollenw.; F. verticillioides Sacc. (Nirenberg); P. tabacinum (van Beyma) M. E. Palm et al.
Common waterhemp seeds were collected from two Missouri soybean fields where biotypes were not controlled by acifluorfen. Plants grown from these seeds were tested for resistance to the diphenyl ether herbicides acifluorfen and lactofen. Resistance to susceptibility (R/S) ratios, calculated as the ratio of the dose required to inhibit dry weight accumulation by 50% (GR50) in resistant plants to that for susceptible plants, were 9.5 and 11 for the Meadville biotype and 28 and 44 for the Bethel biotype exposed to acifluorfen and lactofen, respectively. Electrolyte leakage assays determined that light-induced lipid peroxidation by acifluorfen was greatest on a control population (Bradford), intermediate for the Meadville biotype, and lowest for the Bethel biotype. Levels of the photodynamic pigment protoporphyrin IX (Proto) accumulating in leaf disks exposed to acifluorfen were much lower in the resistant biotypes than in the susceptible wild type, and the level of Proto accumulation was significantly correlated to the degree of membrane disruption. Although the binding of acifluorfen to protoporphyrinogen oxidase in chloroplasts may have been altered in the resistant biotypes, the molecular and biochemical factors involved in the mechanism of resistance remain to be fully characterized. However, this study establishes that the physiological basis for the evolved resistance to diphenyl ethers in common waterhemp rests on the reduction of Proto accumulation.
Nomenclature: Acifluorfen; lactofen; common waterhemp, Amaranthus rudis Sauer AMATA; soybean, Glycine max (L.) Merr.
The study objective was to use demographic information to adjust forage production practices to control the invasive weeds golden chervil and yellow-rattle without herbicides by defining the population dynamics traits that are directly involved in weed responses to farming practices. The principal population traits are capacity for dominance, sensitivity and accessibility of targeted developmental stages, and variation in weed population reactions from year to year. On the basis of demographic surveys of these two weed species when subjected experimentally to various cutting regimes (by date and number), we used matrix simulation models to describe each weed in terms of these traits and to construct species-specific management strategies. Management strategies for golden chervil need to prevent new recruitment by focusing on limiting or eliminating seed production and seedling survival because adult mortality is insensitive to cutting. Grazing to a low residual height is proposed in spring, when seedling emergence is maximal, or when adults reach their apex height to prevent the development of reproductive stems. Cutting before flowering may also efficiently limit seed production. The annual life cycle of yellow-rattle allows more flexibility in its management, even when density fluctuates and is unpredictable. If cutting is scheduled to coincide with peak juvenile height, this can drastically reduce population density the next year, and the population can be eradicated within 3 yr.
Nomenclature: Golden chervil, Chaerophyllum aureum L.; yellow-rattle, Rhinanthus minor L.
Field experiments were conducted to quantify cumulative and annual rates of woolly cupgrass seedling emergence and seed mortality and to characterize woolly cupgrass seedling emergence patterns. Woolly cupgrass seed bank decline was rapid, declining by an average of 73, 96, and 99.5% after 1, 2, and 3 yr, respectively. Woolly cupgrass seed mortality accounted for a much greater portion of seed loss from the seed bank (80%) than germination and emergence (19.5%) during the 3-yr period. Annual rates of emergence ranged from 3 to 17% of the fall seed bank and were similar between seed banks established in different years when compared within the same year. Annual rates of mortality ranged from 50 to 92% and varied between seed banks established in different years when compared within the same year; older seed banks had higher rates of mortality than younger seed banks. For first-year seed banks, 97 to 99% of the total season emergence occurred within the first 3 wk of emergence. However, for second- and third-year seed banks, a greater percentage of the total season emergence occurred later in the season compared with emergence that occurred during the first year. The data suggest that in addition to various environmental and seed-source factors, seed bank age may also play a role in seed mortality rate and seedling emergence pattern.
The advent of site-specific weed management has generated research aimed at predicting weed spatial distributions from existing weed maps or correlations with soil properties and edaphic factors. Forecasting the spatial distribution of annual weeds requires knowledge of fecundity, dispersal, management, and suitable habitat distribution. We hypothesized that wild oat habitat was limited by field-scale heterogeneity in plant-available water. We eliminated seed number and dispersal limitations by seeding wild oat in areas with and without historical wild oat patches in three similarly managed spring wheat fields that differed in soil properties and wild oat infestations and were situated within a 160-km radius of Great Falls, MT. Wild oat habitat was quantified by wild oat leaf area growth rate, mature shoot biomass, seeds produced per plant, biomass water use efficiency, and competitive ratio with spring wheat. Soil texture and plot elevation correlated with existing wild oat patch areas in individual fields, but no site properties consistently correlated with wild oat patch areas in all three fields. Soil water use (SWU) and almost all habitat-defining variables for wild oat were similar between historic patch and nonpatch areas. Wild oat grew and produced seed regardless of existing patch boundaries and field-scale heterogeneity in SWU. This research suggested that (1) wild oat habitat may be unlimited in cereal grain cropping systems of the Northern Great Plains and (2) soil properties are a poor predictor of weed distribution for a generalist such as wild oat.
Nomenclature: Wild oat, Avena fatua L. AVEFA; spring wheat, Triticum aestivum L.
Knowing the interference potential of common waterhemp in corn could be beneficial in planning waterhemp management strategies. In 2000, 2001, and 2002, field studies were conducted to examine both early- and late-season common waterhemp interference in corn. Early-season interference was determined by removing common waterhemp at the VE (vegetative emergence), V4 (four visible leaf collars), V6, V8, V10, V12, and V14 growth stages of corn for the entire season, and late-season interference was determined by allowing common waterhemp to emerge and compete from the VE, V4, V6, V8, V10, V12, and V14 corn growth stages. The interference potential of common waterhemp varied between the year 2000 and the combined years of 2001–2002. This is probably due to differences in precipitation in May and June in these two environments (297 mm in 2000 compared with 198 mm in 2001–2002). An excess of 590 g m−2 of dry matter and 13,000 and 1,200 seeds per female plant were produced when common waterhemp emerged at V4 and V6 corn, respectively, the 2 yr that corn was drought stressed. When corn was not moisture stressed, common waterhemp that emerged at V4 and V6 corn produced less than 220 g m−2 and less than 500 seeds per female plant. Season-long common waterhemp interference reduced corn yield 74% in 2 yr of the study and 11% in the third. Early-season common waterhemp interference began at V6 corn, with a 4 and 23% yield loss in 2000 and 2001–2002, respectively. Common waterhemp interference from late-season emergence reduced corn yield when emergence occurred before the V8 corn growth stage. Taking into account early- and late-season common waterhemp interference. the critical common waterhemp–free period was around the V6 corn stage to optimize corn yield.
Nomenclature: Common waterhemp, Amaranthus rudis Sauer AMATA; corn, Zea mays L.
Hoop structures bedded with crop residues are becoming increasingly popular for swine production in the northcentral United States. Compost made from bedding materials and swine manure can be used as a soil amendment. A 3-yr field experiment was conducted in Boone, IA, to determine how composted swine manure affected selected soil characteristics and nutrient uptake, growth, and seed production of corn and three weed species (giant foxtail, velvetleaf, and common waterhemp) grown in mixture with corn. Two soil management systems, designed to provide equivalent amounts of N to corn, were compared: one that received composted manure and an average of 118 kg N ha−1 as synthetic fertilizer and another that received no composted manure and an average of 143 kg N ha−1 as synthetic fertilizer. Soil organic matter, P, K, and early-season NO3-N levels were greater in the ( ) compost system. The N concentration of velvetleaf shoots, the P concentration of giant foxtail and common waterhemp shoots, and the K concentration of shoots of all three weed species also were greater in the ( ) compost system. Compost application consistently increased common waterhemp height, common waterhemp biomass, and velvetleaf height, but increased velvetleaf biomass in only 1 yr and had no effect on giant foxtail height or biomass. Measurements of weed seed production, conducted in the final year of the study, showed that compost increased velvetleaf and common waterhemp seed production but had no effect on giant foxtail seed production. Compost consistently increased corn height and leaf K concentration but generally had no effect on corn yield. Results of this study indicate that large differences can exist among crop and weed species in their response to soil amendments. Depending on the weed species present, use of composted swine manure may increase requirements for weed management in corn production systems.
Nomenclature: Common waterhemp, Amaranthus rudis Sauer AMATA; giant foxtail, Setaria faberi Herrm. SETFA; velvetleaf, Abutilon theophrasti Medicus ABUTH; corn, Zea mays L.
Tropical signalgrass is one of the dominant weeds in the Florida turfgrass industry and is potentially troublesome for the southeastern turfgrass industry. Tropical signalgrass is especially problematic for St. Augustinegrass sod producers because of lack of control options. The objectives of our research were to determine the effect of light, pH, temperature, water potential, and planting depth on tropical signalgrass germination and emergence. Tropical signalgrass germination does not require light and is optimum at pH 5 to 6, temperature 25 C, and water potentials greater than − 0.4 MPa. Tropical signalgrass shoots emerged from depths of 0 to 7 cm, with maximum germination when placed on the soil surface. Tropical signalgrass seedlings emerged in the field during the second week of March in Ft. Lonesome, FL. Weekly mean soil and ambient air temperatures at the time of emergence were 20 C. Tropical signalgrass emergence was first observed at 118 and 73 growing degree-days (GDD) (13 C base temperature), with a peak emergence period at 222 and 156 GDD for 2001 and 2002, respectively.
Nomenclature: Tropical signalgrass, Urochloa subquadripara (Trin.) R. D. Webster BRASU; St. Augustinegrass, Stenotaphrum secondatum (Wait.) Kuntz.
In western Canada, seasonal seedling recruitment has been reported in weedy canola populations, and seed persistence has been linked to the secondary seed dormancy potential of a genotype. Temperature influences secondary seed dormancy induction in this species. In these experiments we (1) investigated the influence of temperature and osmotic potential on secondary seed dormancy induction in canola, (2) related these to seedbank dynamics and seedling recruitment of two canola genotypes with different seed dormancy potentials in the field, and (3) investigated the influence of residue, burial depth, and soil type on seedbank dynamics and seedling recruitment in the field. In the laboratory, rates of seed dormancy induction were positively correlated to increasing temperatures and water stress. The role of temperature was approximately threefold more important to seed dormancy development than was osmotic potential within the tested ranges of these variables. In the field, seasonal seedbank dynamics of canola buried at 10 cm were strongly influenced by a genotype's inherent potential for secondary dormancy. An increase in the ungerminable portion of the seedbank was observed in the high-dormancy genotype as soil temperatures increased during spring. This did not occur in the low-dormancy genotype, resulting in sixfold less seed persistence in this genotype by midsummer, by which time, the total remaining seedbank was ungerminable in both genotypes. At the 1-cm burial depth, most of the seedbank was depleted by midsummer of the year after seedbank establishment because of high seedbank mortality in all treatments. Thus, the seasonal recruitment behavior in canola was primarily a function of seed death in the shallow seedbank and a shift to an ungerminable state in the deep seedbank.
Greenhouse studies were conducted to determine the influence of phosphorus (P) concentrations on the growth of lettuce, smooth pigweed, and common purslane in monocultures and in mixtures and to determine the P-absorption rate of each species over time. For the P-competition studies, lettuce–smooth pigweed and lettuce–common purslane mixtures were established in P-less hydroponic solutions. Each lettuce–weed mixture was established separately. Concentrations of P were 10, 20, 40, 80, and 160 mg L−1. Lettuce to weed planting proportions were 2:0, 0:2, and 1:1. In the mixtures, biomass of common purslane increased sharply between 10 and 20 mg P L−1, depressing lettuce growth. No biomass changes were observed in smooth pigweed as P concentration increased. However, both weeds increased their P content within this range, depriving lettuce of this nutrient. Common purslane competed for P for its own growth, whereas smooth pigweed absorbed P luxuriously. For the P-absorption studies, roots of lettuce, smooth pigweed, and common purslane plants were submersed in a 20 mg P L−1 solution for 1, 2.5, 5, 10, 20, 40, 60, 90, 180, 360, 720, and 1,440 min. Common purslane was shown to be the most aggressive species for the nutrient, absorbing 50% of the content in 295 min, whereas lettuce and smooth pigweed needed 766 and 825 min to absorb 10 mg P L−1.
Nomenclature: Common purslane, Portulaca oleracea L. POROL; smooth pigweed, Amaranthus hybridus L. AMACH; lettuce, Lactuca sativa L.
Giant reed is one of the most widespread invasive species in riparian habitats in California and other coastal states of the United States. This species is thought to spread primarily asexually by flood dispersal of stem and rhizome pieces; viable seeds have not been found in the United States. Research was conducted to quantify genetic variation in giant reed along the Santa Ana River in California and to investigate the pattern of distribution of variation along this watershed. Populations at least 3.2 km apart were collected along the length of the Santa Ana River from the headwaters to the Pacific Ocean. One additional population from a different watershed was collected to serve as an out-group. Genetic analyses were conducted using both starch gel electrophoresis for isozyme analysis and random amplified polymorphic DNA (RAPD) analysis. Both isozyme and RAPD analyses revealed levels of genetic diversity comparable with those in the literature for clonal species, suggesting that asexual reproduction is the primary means of spread of giant reed. Most phenotypes were spread along the Santa Ana River, which is expected if water is the primary means of spread of vegetative propagules. Among the unique phenotypes found, two isozyme phenotypes and one RAPD phenotype were dominant and were found spread along the river, which may indicate greater fitness or competitive superiority to the other phenotypes that were less common. The dominant phenotypes were also found in the out-group population, possibly because of spread by humans. Because spread occurs mainly asexually, management efforts should focus on preventing establishment and spread of vegetative propagules. A moderate level of genetic diversity also suggests that biological control of this weed could be successful.
Information on weed responses to soil fertility levels is needed to aid development of fertilizer management strategies as components of integrated weed management programs. A controlled environment study was conducted to determine shoot and root growth response of 22 agricultural weeds to fertilizer phosphorus (P) applied at 5, 10, 20, 40, or 60 mg kg−1 soil. An unfertilized control was included. Wheat and canola were included as control species. Shoot and root growth of all weeds increased with added P, but the magnitude of the response varied greatly among species. Many weeds exhibited similar or greater responses in shoot and root biomass to increasing amounts of soil P compared with wheat or canola. With increasing amounts of P, 17 weed species increased shoot biomass more than wheat, and 19 weed species increased shoot biomass more than canola. However, only 10 weed species exhibited greater increases in root biomass than canola, and no weed species increased root biomass more than wheat with added P. Canola was among species taking up the greatest percentage of available P at all P doses. However, percentage P uptake by wheat relative to other species varied with P dose. Only four weed species extracted more P than wheat at low P levels, but 17 weed species extracted more P at high soil P levels. These findings have significant implications as to how soil fertility may influence crop–weed competition.
Nomenclature: Canola, Brassica napus L. ‘Excel’; spring wheat, Triticum aestivum L. ‘Katepwa’.
Lanceleaved waterplantain is an exotic weed of rice that was introduced into Australia in the 1930s. Since its introduction, it has spread throughout much of the rice-growing region in southeastern Australia. The variability of lanceleaved waterplantain in these regions was studied using polymerase chain reaction-based, inter simple sequence repeat (ISSR) analysis. Deoxyribonucleic acid fingerprints from samples of the weed from southeastern Australia were compared between locations and with two samples of common waterplantain, a closely related species. The analysis indicated that there were two distinct groups of lanceleaved waterplantain that correlated with location. From the results of multidimensional scaling analysis, it is hypothesized that the Griffith group did not arise from hybridization between lanceleaved waterplantain and common waterplantain, and that it is more likely that the group arose from a separate introduction into the area. It is also suggested that there is seed movement between areas in the Murray Valley and Colleambally Irrigation areas. The implications of this variation for biological control of the weed are discussed.
Nomenclature: Common waterplantain, Alisma plantago-aquatica L. ALSPA; lanceleaved waterplantain, Alisma lanceolatum With. ALSLA; rice, Oryza sativa L.
Sphenoptera jugoslavica negatively influences diffuse knapweed populations, but the influence is inconsistent in space and time. In spring 1998, a 3-yr experiment was established to determine whether low rates of picloram or clopyralid would increase the percentage of plants infested with S. jugoslavica, thereby potentially enhancing its capacity to control diffuse knapweed. The experiment was conducted at three sites in Colorado, where S. jugoslavica was released in 1994. Picloram and clopyralid were applied separately to plots at 35, 70, or 140 g ha−1 during June or September, and a non–herbicide-treated control was added. Density and cover measurements were collected in permanent quadrats three times during each growing season to determine whether herbicides influenced diffuse knapweed growth and population dynamics. Diffuse knapweed plants were harvested outside the permanent quadrats to determine the percentage of plants bearing S. jugoslavica larvae. During the spring after herbicide application, all picloram rates and the 35-g ha−1 rate of clopyralid applied the previous June increased the percentage of plants infested by S. jugoslavica approximately 25% compared with the nonsprayed control. None of the herbicide treatments increased the percentage of plants infested by S. jugoslavica 2 yr after application, indicating that the herbicides' positive effects on the percentage of plants infested by S. jugoslavica lasted only 1 yr. Results indicate that combining S. jugoslavica with low rates of picloram or clopyralid applied in June can improve diffuse knapweed control compared with using S. jugoslavica alone.
Adjuvant effects on disease severity caused by the bioherbicide P. papaveracea on opium poppy were evaluated. Tween 20, Tween 80, Triton X-100, Tactic, CelGard, and Keltrol inhibited appressorium formation but not conidial germination on detached leaves. The disease severity varied from 11 to 83% necrosis in field experiments involving eight adjuvants at various concentrations plus 1 × 106 conidia ml−1 or minus pathogen. The three best-performing adjuvants when combined with pathogen, Tactic (1%, v/v), Bond (1%, v/v), and Tween 20 (1%, v/v), were included along with Tween 20 (0.001%, v/v) in field experiments in 1998. Tween 20 (1%, v/v) plus pathogen (1 × 106 conidia ml−1) caused the most severe disease, averaging 68% necrosis within 2 wk of treatment. Overall, plots treated with adjuvant plus P. papaveracea had a 22% reduction in capsule weight per plot as compared to plots treated with the adjuvant alone. Tactic (1%, v/v), Silwet-L77 (0.1%, v/v), Tween 20 (1%, v/v), and Tween 20 (0.001%, v/v) were included in field experiments in 1999. The treatment with Tween 20 (1%, v/v) plus pathogen (2 × 106 conidia ml−1) caused severe disease, averaging 56% necrosis within 2 wk of treatment. In 1999 plots treated with adjuvant plus pathogen averaged a 27% reduction in capsule weight as compared with plots treated with the adjuvants alone. The inclusion of Tween 20 (1%, v/v) with P. papaveracea conidia greatly enhanced efficacy on opium poppy.
Nomenclature: Opium poppy, Papaver somniferum L. PAPSO; Pleospora papaveracea Sacc.
Japanese honeysuckle presents a serious problem to the economically attractive natural regeneration of loblolly and shortleaf pine. This research investigated the potential allelopathic interference mechanisms of Japanese honeysuckle in relation to pine regeneration and growth, which may provide insight into overcoming this problem. The allelopathic potential of root exudates and leaf litter from Japanese honeysuckle was tested against loblolly and shortleaf pine seedlings. When Japanese honeysuckle and loblolly pine seedlings were grown using the same irrigation reservoir, there was no significant effect on the growth of either pine species. Exudates of Japanese honeysuckle grown as a pure culture in donor cups also produced no growth effects on pure-cultured pine seedlings grown in acceptor cups. In other assays, aqueous extracts of Japanese honeysuckle leaf tissue were toxic to duckweeds at concentrations well below levels where plasmolysis might cause effects. When Japanese honeysuckle leaf tissue was added to soil at a rate of 2 g tissue 100 g−1 soil, mean seedling height at 128 d after planting was reduced by as much as 40%. Moreover, pine seedlings grown in the presence of Japanese honeysuckle tissue exhibited significant chlorosis of the shoot and needles. Gas chromatography–mass spectroscopy analyses and high-performance liquid chromatography of Japanese honeysuckle leaf tissue aqueous extracts confirmed the presence of five compounds previously identified as possible allelochemicals: 4-hydroxycinnamic acid; 2-hydroxycinnamic acid; 3,4-dihydroxybenzoic acid; 3,4-dihydroxycinnamic acid; and chlorogenic acid. Results indicate that allelopathy plays at least a partial role in Japanese honeysuckle interference with loblolly and shortleaf pine.
Nomenclature: Japanese honeysuckle, Lonicera japonica Thunb.; loblolly pine, Pinus taeda L.; shortleaf pine, Pinus echinata Mill; duckweed, Lemna minor L.
In Europe, 18 weedy grass species had been confirmed to have biotypes with resistance to herbicides. The most frequent is that of atrazine resistance, with nine resistant biotypes found. These biotypes are mainly resistant because of changes in the D1 protein of photosystem II. All atrazine-resistant biotypes, except that of bristly foxtail, show cross-resistance to s-triazine and as-triazines. From an agriculture point of view, the most important cases of resistance are those found in blackgrass, wild oat, Italian ryegrass, rigid ryegrass, and barnyardgrass. In these species, cross- and multiple resistances were observed due to metabolism or changes in the target protein by genetic mutations or both. These biotypes are extremely difficult to control with alternative herbicides.
Herbicide-resistant weeds are a constraint to weed management in many cropping regions around the world. Of the numerous populations of weeds with resistance to herbicides, it appears that most have resistance due to an alteration to the target enzyme. Use of herbicides with alternative modes of action has relatively easily controlled these populations. In stark contrast are a much smaller number of populations with resistance due to increased rates of herbicide detoxification. These populations may be cross-resistant to herbicides with other modes of action. Such cross-resistance can severely compromise weed control because alternative herbicides may fail on their first use. It has proved extremely difficult to predict cross-resistance due to increased herbicide detoxification in weed populations and hence, difficult to provide adequate advice to growers on how to avoid or manage the problem. Most commonly, such cross-resistance has been selected by certain aryloxyphenoxypropanoate herbicides such as diclofop-methyl and phenylurea herbicides such as chlorotoluron and isoproturon; however, other herbicides can also act as selecting agents for this type of resistance. Illustrative examples from rigid ryegrass in Australia and blackgrass in Europe demonstrate the breadth of the problem and the magnitude of the effort required to understand increased herbicide detoxification as a resistance mechanism. Recent work has elucidated the genetic basis of cross-resistance in some populations, but this has so far not provided new predictive tools useful to growers. Despite more than a decade of research aimed at unraveling the complexities of cross-resistance due to increased herbicide detoxification, management of these cross-resistant populations remains a significant challenge.
Safeners are chemical agents that reduce the phytotoxicity of herbicides to crop plants by a physiological or molecular mechanism, without compromising weed control efficacy. Commercialized safeners are used for the protection of large-seeded grass crops, such as corn, grain sorghum, and wet-sown rice, against preplant-incorporated or preemergence-applied herbicides of the thiocarbamate and chloroacetanilide families. Safeners also have been developed to protect winter cereal crops such as wheat against postemergence applications of aryloxyphenoxypropionate and sulfonylurea herbicides. The use of safeners for the protection of corn and rice against sulfonylurea, imidazolinone, cyclohexanedione, isoxazole, and triketone herbicides also is well established. A safener-induced enhancement of herbicide detoxification in safened plants is widely accepted as the major mechanism involved in safener action. Safeners induce cofactors such as glutathione and herbicide-detoxifying enzymes such as glutathione S-transferases, cytochrome P450 monooxygenases, and glucosyl transferases. In addition, safeners enhance the vacuolar transport of glutathione or glucose conjugates of selected herbicides. The safener-mediated induction of herbicide-detoxifying enzymes appears to be part of a general stress response.
Herbicide resistance is the heritable ability of a weed biotype or population to survive a herbicide application that would effectively kill a susceptible population of the weed. In the U.K. the most widespread and financially important herbicide-resistant weed is blackgrass. Investigations to elucidate the molecular mechanisms conferring herbicide resistance to blackgrass populations have been ongoing for two decades. Although the identification of target site–resistant populations has proved to be relatively straightforward (using, for example, target site assays in vitro), the study and understanding of resistance mechanisms involved in enhanced metabolism has proven to be more problematic. Research has focused on the cytochrome P450 monooxygenase and glutathione S-transferase (GST) enzyme families, both of which have been shown to be important in herbicide metabolism in many weed and crop species. GST activity and abundance are greater in a selection of herbicide-resistant blackgrass biotypes, and herbicide treatment of field populations of blackgrass results in the survival of the proportion of population possessing the greatest GST activity and abundance. In addition, GST activity in the field increases between winter and spring, and this coincides with reduced efficacy of important blackgrass herbicides. GST activities within field populations of blackgrass are highly varied, and this plasticity is discussed in relation to the development of resistant populations in field situations. This article describes research results in blackgrass and compares them with GST studies in other weed species as well as with other mechanisms for enhanced metabolism-based resistance.
Propanil is an acylanilide herbicide introduced in the early 1960s to control dicotyledonous weeds and grasses, including Echinochloa species in cultivated rice. Since then, propanil has been used extensively in rice production in the United States and in several other countries. Propanil is an inhibitor of photosystem II, but rice is tolerant to propanil because of the presence of a high level of aryl acylamidase that catalytically degrades the compound to nonphytotoxic products, i.e., 3,4-dichloroaniline and propionic acid. About 10 yr ago, biotypes of barnyardgrass and junglerice were discovered to be resistant to propanil. The resistance mechanism of these two biotypes has been shown to be elevated levels of aryl acylamidase activity. Various strategies to combat propanil resistance and to more fully understand the biochemistry involved in this resistance have been investigated. These include studies on the interactions of herbicides and other chemicals with propanil, rotation of rice with other crops (consequently the use of other herbicide modes of action), and use of alternative herbicides in rice. Certain compounds, including some organophosphate insecticides, are potent inhibitors of aryl acylamidase, which can act as synergists with propanil to increase phytotoxicity. Another compound that lacks insecticidal or herbicidal activity, PPG-124, has been commercialized as a herbicide synergist for propanil. These chemical and biochemical interactions and other factors involved in propanil-resistant Echinochloa weeds are presented and discussed.
Nomenclature: 3,4-Dichloroaniline; PPG-124; propanil; barnyardgrass, Echinochloa crus-galli (L.) Beauv. ECHCG; junglerice, Echinochloa colona (L.) Link ECHCO; rice, Oryza sativa L.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere