Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
The rust pathogen, Puccinia thlaspeos, is used for biocontrol of dyer's woad. Rust infection results in chlorotic leaves and abnormal flower and seed production of this noxious weed during its second year of growth. Auxin-like and cytokinin-like activity of healthy and infected plants (roots, shoots, and leaves) were determined during different growth stages. These samples were analyzed by use of the mung-bean rooting bioassay (auxin-like activity) and the soybean-callus bioassay (cytokinin-like activity). Rooting activity in the mung-bean bioassay was significantly higher in the infected-root extracts from Harvest 1 (rosette stage) compared with the healthy-root extracts and significantly higher in the healthy-shoot extracts from Harvest 2 (bolting plants) compared with infected-shoot extracts. Infected plants collected during Harvest 1 had greatly reduced cytokinin-like activity in the roots, shoots, and leaves compared with the healthy plants. Cytokinin-like activity increased slightly in the infected plants collected in subsequent harvests, with the highest activity recorded in root extracts. The results suggest potential ways that the rust-causing fungal pathogen is able to influence some physiologic processes in dyer's woad and so affect its growth.
Nomenclature: Dyer's woad, Isatis tinctoria L., ISCRU; rust, Puccinia thlaspeos C. Shub.; mung bean, Vigno mungo L.; soybean, Glycine max (L.) Merr.
Microarray analysis was used to follow changes in gene expression coinciding with seasonal changes in the dormancy status of crown buds of field-grown leafy spurge. Known cold-regulated genes were induced, and numerous gibberellic acid–responsive genes were down-regulated during the transition from paradormancy to endodormancy. Genes involved in photomorphogenesis were induced during endodormancy. Also, ethylene signaling responses were observed during ecodormancy rather than endodormancy. These results provide additional insights into the signals regulating expression of several genes previously associated with transition from paradormancy to growth in root buds.
Nomenclature: Leafy spurge, Euphorbia esula L. EPHES.
Experiments were conducted to identify acetolactate synthase (ALS, EC 2.2.1.6 [formerly EC 4.1.3.18]) mutation sites in eight biotypes of smooth pigweed and correlate these mutations with patterns of herbicide cross-resistance. Four herbicide-resistant smooth pigweed biotypes (R5, R6, R7, R8) collected from fields in Virginia, Delaware, and Maryland, showed a similar response to postemergence applications of the ALS-inhibitors imazethapyr, pyrithiobac, chlorimuron, thifensulfuron, and cloransulam. These R biotypes ranged from 261- to 537-fold resistant to imazethapyr and 29- to 88-fold resistant to pyrithiobac. The biotypes also had reduced sensitivity to chlorimuron and thifensulfuron of 2- to 14-fold and 10- to 25-fold, respectively, relative to a susceptible smooth pigweed biotype (S). Biotypes R6, R7, and R8 had reduced sensitivity of 3- to 10-fold to cloransulam relative to the S biotype, whereas R5 had increased sensitivity. All of these biotypes were found to have a serine to asparagine substitution at amino acid position 653, as numbered relative to the protein sequence of Arabidopsis thaliana. This stands in contrast to four other imidazolinone (IMI)-resistant smooth pigweed biotypes (R1, R2, R3, R4) that were collected from fields in Somerset County, Maryland. These biotypes were found to have an alanine to threonine substitution at position 122 of the ALS enzyme and were previously characterized at the whole-plant level with high-level resistance to IMI herbicides, increased sensitivity to pyrimidinylthiobenzoate and triazolopyrimidine sulfonanilide herbicides, and low to no cross-resistance to sulfonylurea herbicides.
Herbicidal activities of clove oil and its primary constituent eugenol on broccoli, common lambsquarters, and redroot pigweed and the role of crystalline leaf epicuticular wax (LEW) in susceptibility and retention of these essential oils were studied. Clove oil (2.5%) and eugenol (1.5%) were applied to leaves of greenhouse-grown broccoli, common lambsquarters, and redroot pigweed seedlings and effects on seedling growth and leaf cell membrane integrity were studied. Compared with eugenol, clove oil caused greater inhibition of seedling growth in all species. Both eugenol and clove oil caused greater loss of membrane integrity and inhibition of seedling growth in redroot pigweed, which has no crystalline LEW, compared with common lambsquarters, which has a thick layer of crystalline LEW. In broccoli seedlings with LEW, clove oil caused greater inhibition of growth than eugenol. Both clove oil and eugenol caused greater electrolyte leakage from broccoli leaves without LEW than in the leaves with LEW. Removal of LEW increased electrolyte leakage, an indicator of cell membrane damage, by 97% in eugenol-treated and 26% in clove oil–treated broccoli leaves. Susceptibility of broccoli seedlings and possibly some weed species may, therefore, be affected by factors (e.g., genetic, environmental) that influence the amount of LEW. Although the presence of LEW greatly reduced the retention of the essential oil solutions, there was no significant difference between the retention of clove oil and eugenol solutions, indicating that differences in their phytotoxicity to broccoli leaves was not due to differential foliar retention.
Nomenclature: Common lambsquarters, Chenopodium album L. CHEAL; redroot pigweed, Amaranthus retroflexus L. AMARE; clove, Syzygium aromaticum (L.) Merr. & Perr.; purple sprouting broccoli, Brassica oleracea var. italica.
The spatial and temporal pattern of wild oat emergence in eastern Washington is affected by the steep, rolling hills that dominate this landscape. The objective of this study was to assess the impact of landscape position and crop residue on the emergence phenology of wild oat. Emergence of a natural wild oat infestation was characterized over two growing seasons (2003 and 2004), at two wheat residue levels (0 and 500 g m−2), and at five landscape positions differing in slope, aspect, and elevation in a no-till winter wheat field. Wild oat emerged 1 to 2 wk earlier at south-facing landscape positions than at north-facing landscape positions. Crop residue delayed wild oat emergence by 7 to 13 d relative to bare soil at south-facing positions in 2003 and had a reduced effect on emergence at north-facing landscape positions. Therefore, preserving surface residues tended to synchronize emergence across the landscape and may facilitate better timing of weed control where residue is present. Emergence of wild oat was modeled as a function of thermal time adjusted by water potential using a Weibull function. Temperature explained more variation in the model than water potential. This model explained much of the variability in wild oat emergence among landscape positions over these 2 yr and may be useful as a tool to predict the timing of wild oat emergence. Results also indicate that site-specific modeling is a plausible approach to improving prediction of weed seedling emergence.
The low-nitrogen status of highly weathered soils may offer a potential alternative for weed suppression in agricultural systems with N2-fixing crops. In this study, we used sicklepod as a model to evaluate weed response that might occur with managed reductions in nitrogen-soil fertility. A field study was conducted with the parental generation supplied 0, 112, 224, or 448 kg N ha−1. Decreased nitrogen fertility led to reduced shoot biomass, seed number, and total seed mass. Individual seed mass was lower, but seed % nitrogen was not affected. Analysis of seed-mass distribution confirmed that low parental fertility was associated with more small seeds as a proportion of total seeds produced. Additional experiments in hydroponics culture revealed slower growth rates of seedlings produced from small seeds when grown under low-nitrogen conditions. Competitiveness of plants from small (low nitrogen) and large (high nitrogen) seed classes was determined in a replacement-series experiment conducted in sand culture in a controlled environment at two densities and two levels of nitrogen nutrition. Plants produced from smaller seeds were less competitive in low-nitrogen fertility conditions, but plants from small and large seeds competed similarly when grown under high-nitrogen fertility. The results support the hypothesis that comprehensive management strategies to reduce nitrogen availability for weed growth in low-fertility conditions could decrease weed interference by decreasing growth and seed production of parental plants and through maternal effects that lower competitiveness of offspring.
Annual sowthistle has become more abundant under no-till systems in southern Australia. Increased knowledge of germination biology of annual sowthistle would facilitate development of effective weed control programs. The effects of environmental factors on germination and emergence of annual sowthistle seeds were examined in laboratory and field experiments. Seeds of annual sowthistle were able to germinate over a broad range of temperatures (25/15, 20/12, and 15/9 C day/night temperatures). Seed germination was favored by light; however, some germination occurred in the dark as well. Greater than 90% of seeds germinated at a low level of salinity (40 mM NaCl), and some seeds germinated even at 160 mM NaCl (7.5%). Germination decreased from 95% to 11% as osmotic potential increased from 0 to −0.6 MPa and was completely inhibited at osmotic potential greater than −0.6 MPa. Seed germination was greater than 90% over a pH range of 5 to 8, but declined to 77% at pH 10. Seedling emergence was the greatest (77%) for seeds present on the soil surface but declined with depth, and no seedlings emerged from a soil depth of 5 cm. In another experiment in which seeds were after-ripened at different depths in a field, seed decay was greater on the soil surface than at 2 or 5 cm depth. At the end of the growing season, there was a much greater persistence of buried seed (32 to 42%) than seeds present on the soil surface (8%). Greater persistence of buried seed could be due to dormancy enforced by dark in this species.
Nomenclature: Annual sowthistle, Sonchus oleraceus L. SONOL.
Distance-based redundancy analysis (db-RDA), a recently developed ordination technique useful for both multivariate hypothesis testing and data interpretation, was used to evaluate treatment effects on weed communities in a long-term study of alternative potato cropping systems. The experiment consisted of a factorial arrangement of three pest management systems, conventional (CON), reduced input (RI), and biointensive (BIO), two soil management systems (amended vs. unamended), and two crop-rotation entry points. Soil samples collected in the spring of 1998 were subjected to exhaustive germination as a means of characterizing the weed community. Using partial ordinations, each factor in the factorial treatment structure was tested separately, revealing a significant interaction between pest and soil management systems. An ordination diagram of the pest by soil management interaction was used to interpret the results. Weed species that were highly correlated with the first two ordination axes included: common lambsquarters, broadleaf plantain, oakleaf goosefoot, common hempnettle and a complex of the Brassicaceae that included wild mustard, birdsrape mustard, and wild radish. Univariate analyses confirmed the response of these species to the factors examined. The BIO pest management system showed a different response to soil amendments than the other systems. Soil amendments caused an increase in the total weed density in the CON and RI systems, but caused a decrease in the BIO system. Given the need for better multivariate hypothesis testing and data interpretation in many types of weed science research, the use of db-RDA is expected to grow.
Nomenclature: Birdsrape mustard, Brassica rapa L. BRARA; broadleaf plantain, Plantago major L. PLAMA; common hempnettle, Galeopsis tetrahit L. GAETE; common lambsquarters, Chenopodium album L. CHEAL; oakleaf goosefoot, Chenopodium glaucum L. CHEGL; wild mustard, Brassica kaber (DC.) L. C. Wheeler BRAKA; wild radish, Raphanus raphanistrum L. RAPRA; potato, Solanum tuberosum L.
Threehorn bedstraw is an important dicotyledonous weed of winter crops in southern Australia, which can be difficult to control in some field crops. Knowledge of the germination ecology of this weed would facilitate development of effective weed control programs. Seed germination in the laboratory was greater for seeds that after-ripened while buried in the soil relative to those that after-ripened on the soil surface. The timing of greatest seed germination in the laboratory was found to coincide with the period of low temperature in the field. Seed germination of threehorn bedstraw was moderately sensitive to salt stress but moderately tolerant to osmotic stress. Seeds of threehorn bedstraw germinated over a broad range of pH from 4 to 10. No seedlings emerged from seeds placed on the soil surface. Maximum seedling emergence occurred at depths of 1 to 2 cm (89 to 91%) and declined at greater depths.
Observational studies of weed emergence provide essential data for the creation and testing of predictive emergence models, with data ideally being collected from a wide range of sites representing a range of environments under which the seedlings of a given species emerge. The spring emergence of genetically engineered glyphosate-resistant volunteer canola was monitored in 20 farmers' commercial wheat fields over 2 yr, 2003 and 2004, in the southwestern region of Manitoba, Canada. Three different tillage systems, low-disturbance direct-seeded, high-disturbance direct-seeded, and conventionally tilled fields, were represented in this sample. Tillage system did not significantly influence the emergence periodicity of volunteer canola, but did influence total densities observed. Total volunteer canola densities in the surveyed fields were variable and ranged from 6 to 2,015 seedlings m−2. Conventionally tilled fields had the lowest densities of volunteer canola seedlings, and high-disturbance direct-seeded fields (no autumn tillage) had the highest densities. Volunteer canola is a relatively early spring emerging plant species requiring minimal accumulated growing degree days for emergence (calculated using a base temperature of 5 C). Emergence curves were steep, with a short window of volunteer canola emergence either prior to or within a spring-seeded wheat crop. To determine what proportion of autumn-broadcast canola seed (simulated harvest losses) would recruit the following spring and the influence of fall or spring tillage on this recruitment, a small plot experiment also was conducted at three sites. The following spring the percentage of canola seedlings that emerged ranged from 1.3 to 9.4% of the seed broadcast, depending upon the tillage treatment. The effect of tillage treatment on canola densities in the small plot experiment was similar to the field survey results.
Nomenclature: Canola, Brassica napus L. BRSNS; spring wheat, Triticum aestivum L. TRZAS.
The historic maternal environment; the identity of competing, neighboring plants; and biotic stresses, such as fungal disease and herbivory, interact to influence the competitive ability, reproductive output, and plasticity of weed populations. A weed capable of altering its phenotype in response to environmental factors is better able to compete for resources in agroecosystems, thereby reducing crop yields and contributing more seeds to the seed bank. Velvetleaf is a highly competitive annual weed in many North American cropping systems, exhibiting a high degree of phenotypic plasticity in response to biotic and abiotic factors. We examined the effects of seed size (small and large), competitive environment (with and without soybean), and stress level (none = no treatment, moderate = pathogen inoculation, high = pathogen plus herbicide) on velvetleaf allometry and reproductive output during three field seasons. Only under the high-stress treatment was velvetleaf biomass, height, and reproductive output compromised (> 15% each), and these traits were further reduced with soybean competition. Soybean competition alone reduced velvetleaf biomass (> 50%), height (25%), and seed output (50%), but effects of competition varied with stress level. Velvetleaf plants that originated from large seeds (≥ 10 mg) generally outperformed plants originating from small seeds (< 10 mg) except under the high-stress treatment. These findings suggest that velvetleaf life-history traits and reproductive output in the current generation are a function of both present and historic factors. Management strategies for this species should involve tactics that not only reduce its competitive ability (e.g., biomass, height) but also decrease its seed production via synergistic stressors such as increased crop competitiveness, reduced-rate herbicide applications, and pathogen infection.
Germination of African mustard seeds collected from southern Australia was not influenced by light conditions at the optimum temperature of 20/12 C. However, seed germination was inhibited by light at the lower temperature (15/9 C). Presence of light increased the sensitivity of seeds to low temperature, as well as salt and osmotic stress. In dark conditions, seed germination was relatively unaffected at a low level of salinity (80 mM NaCl) but decreased even at 10 mM NaCl in light/dark conditions. In the dark, seed germination was unaffected up to an osmotic potential of −0.6 MPa but declined thereafter. Seeds of African mustard germinated over a broad range of pH from 4 to 10. Seed germination was stimulated by potassium nitrate (from 0.005 to 0.04 M) and gibberellic acid (0.001 M). Seedling emergence of African mustard was the greatest (51%) for seeds buried at 1 cm but no seedlings emerged from seeds placed at a depth of 5 cm. At the end of the growing season, seed decay (77 to 87%) and dormant (12 to 18%) components were similar among different seed burial depths. Information gained in this study will be important in developing a better understanding of the requirements for African mustard germination and emergence.
The influence of environmental factors on germination and emergence of horseweed was examined in growth chamber experiments. Germination was highest (61%) under 24/20 C day/night temperature under light. Horseweed seed germination was observed under both light (13 h photoperiod) and complete darkness (24 h), but germination under continuous darkness was only 0 to 15% compared with 0 to 61% under light. All other experiments were conducted under 24/20 C and 13-h light conditions. Germination was 19 to 36% over a pH range from 4 to 10, with a trend toward higher germination under neutral-to-alkaline conditions. Horseweed germination was > 20% at < 40 mM NaCl concentration and lowest (4%) at 160 mM NaCl. These data suggest that even at high soil salinity conditions, horseweed can germinate. Germination of horseweed decreased from 25% to 2% as osmotic potential increased from 0 (distilled water) to −0.8 MPa, indicating that germination can still occur under moderate water stress conditions. Horseweed seedling emergence was at its maximum on the soil surface, and no seedlings emerged from seeds placed at a depth of 0.5 cm or higher.
Laboratory and greenhouse experiments were conducted to determine the effect of light, temperature, solution pH, solution osmotic potential, and oxygen concentration on sicklepod germination and radicle plus hypocotyl elongation and seeding depth on emergence. Scarified, nondormant sicklepod seeds were used for these experiments. Sicklepod germination was not influenced by red or far-red light nor was light required for germination, which averaged 81% over all light treatments. Sicklepod germinated over a range of constant temperatures from 15 to 50 C, with optimum germination between 15 and 30 C. Germination was optimal near pH 6 for temperatures of 15 and 30 C. Germination and radicle plus hypocotyl length decreased with decreasing solution osmotic potential, and no germination occurred at a solution osmotic potential of −0.75 MPa at 15 C during 7 d incubation. Germination was greater at 20% oxygen than at 2% oxygen. The mean emergence depth for sicklepod was 3.3 and 4.6 cm in a highly disturbed sand and sandy loam soil, respectively. Sicklepod emerged from a 10-cm depth in the sandy loam soil, but no emergence occurred in the sand soil at this depth.
Nomenclature: Sicklepod, Senna obtusifolia (L.) Irwin and Barneby CASOB.
Laboratory and greenhouse experiments were conducted to determine the effect of light, temperature, solution pH, solution osmotic potential, and oxygen concentration on pitted morningglory germination and radicle plus hypocotyl elongation, and seeding depth on its subsequent emergence. Daily exposure of seed to natural light resulted in lower germination than in darkness, whereas germination was not influenced by brief exposure to red or far-red light. Germination occurred over a wide range of constant temperatures, from 7.5 to 52.5 C, with optimum germination between 20 and 25 C. Germination occurred at solution pH range of 3 to 10 and was optimal from pH 6 to 8. Radicle plus hypocotyl elongation was influenced by the interaction of temperature and solution pH. A combination of acidic medium (pH 6) and high temperature (30 C) resulted in the greatest radicle plus hypocotyl length of 7.6 cm after a 7-d incubation. Germination and radicle plus hypocotyl elongation, averaged over the 15 and 30 C temperature, decreased with increasing moisture stress, with less than 3% normalized germination at −1.0 MPa. Germination was 29, 40, and 51% at 2, 10, and 20% oxygen, respectively, averaged over 15 and 30 C. Germination of seed lying on the soil surface covered with filter paper or without any cover was similar, averaging 64%. Normalized emergence, relative to germination on the soil surface, decreased with increasing burial depth to 4% emergence at 10 cm, with a mean emergence depth of 4.1 cm, averaged across two soil types.
Nomenclature: Pitted morningglory, Ipomoea lacunosa L. IPOLA.
Nitrogen (N) management markedly affects weed competition with crops. The effect of N availability on plant competition varies with a plant's abilities to capture and use N. Accordingly, we expected the N effect on plant competition to change with the relative emergence time of competing individuals. This hypothesis was tested by growing corn and velvetleaf plants in target and neighbor roles and comparing their N responses. Sowing times were varied, so that target plant emergent dates were constant, whereas neighbor plants were sown to emerge 7 d before, with, or 7 d after targets. Seedlings were fertilized daily with 2.5 mmol (“low N”) or 10.0 mmol (“high N”) ammonium nitrate (NH4NO3). Corn had greater total weight, leaf area, and root-to-shoot ratio (RSR) than velvetleaf. Different dry weights may have reflected seed weights; corn seed weight was greater than velvetleaf. Regardless of role, corn and velvetleaf dry weight and leaf area were greater with high N than low N; in contrast, RSR was lower with high N than low N. The RSR response to N availability suggested plant resources were shifted from N foraging, toward competition for photosynthetically active radiation (PAR). In target plants of each species, dry weight and leaf area increased linearly with time between target and neighbor emergence. Conversely, dry weight and leaf area of neighbor plants decreased with time between target and neighbor emergence. The N response of neighbor plants increased with time of emergence between target and neighbor emergence. Larger plants likely required more N to sustain growth than smaller plants; plants that emerged earlier likely had greater daily N requirements than those that emerged later. These results support factoring in emergence when predicting N effects on plant competition. Optimal N provisioning for integrated weed management may differ with emergence times of competing plants.
Nomenclature: Velvetleaf, Abutilon theophrasti (L.) Medicus ABUTH; corn, Zea mays L. ‘Garst 5850’.
Broomrapes (Orobanche spp.) are chlorophyll-lacking root parasites of many dicotyledonous species and cause severe damage to vegetable and field crops from several botanic families such as Fabaceae, Solanaceae, Compositae, and Umbelliferae. In Oregon, small broomrape has been identified as a parasite of red clover. In Oregon field studies, small broomrape control was excellent when imazamox was applied postemergence to red clover but preemergence to small broomrape. Temperature is one of the main factors that affect broomrape development. The objective of this study was to optimize small broomrape chemical control in red clover based on growing degree days (GDD). The study was conducted in controlled temperature conditions. Red clover plants were grown in soil artificially infested with small broomrape seeds. Imazamox was applied at 800, 1,000, 1,200, and 1,400 GDD. There was no injury to red clover from any imazamox treatment at any of the application timings. Small broomrape shoot emergence was reduced where imazamox was applied compared to the untreated control. Early imazamox applications reduced small broomrape biomass more than later applications. Control was greatest when imazamox was applied at 20 g ai ha−1 at 1,000 GDD. This application controlled small broomrape for 800 GDD after initial treatment. However, season-long control would require an additional treatment. This model predicts the optimal timing and rate of imazamox application for small broomrape control in red clover.
Nomenclature: Imazamox; small broomrape, Orobanche minor J. E. Smith ORAMI; red clover, Trifolium pratense L. TRFPR.
The critical period for weed control (CPWC) identifies the phase of the crop growth cycle when weed interference results in unacceptable yield losses; however, the effect of planting date on CPWC is not well understood. Field studies were conducted in 2004 and 2005 at Urbana, IL, to determine CPWC in sweet corn for early May (EARLY) and late-June (LATE) planting dates. A quantitative series of treatments of both increasing duration of interference and length of weed-free period were imposed within each planting-date main plot. The beginning and end of the CPWC, based on 5% loss of marketable ear mass, was determined by fitting logistic and Gompertz equations to the relative yield data representing increasing duration of weed interference and weed-free periods, respectively. Weed interference stressed the crop more quickly and to a greater extent in EARLY, relative to LATE. At a 5% yield-loss level, duration of weed interference for 160 and 662 growing-degree days (GDD) from crop emergence marked the beginning of the CPWC for EARLY and LATE, respectively. When maintained weed-free for 320 and 134 GDD, weeds emerging later caused yield losses of less than 5% for EARLY and LATE, respectively. Weed densities exceeded 85 plants m−2 for the duration of the experiments and predominant species included barnyardgrass, common lambsquarters, common purslane, redroot pigweed, and velvetleaf. Weed canopy height and total aboveground weed biomass were 300% and 500% higher, respectively, for EARLY compared with LATE. Interactions between planting date and CPWC indicate the need to consider planting date in the optimization of integrated weed management systems for sweet corn. In this study, weed management in mid-June–planted sweet corn could have been less intensive than early May–planted corn, reducing herbicide use and risk of herbicide carryover to sensitive rotation crops.
Nomenclature: Barnyardgrass, Echinochloa crus-galli (L.) Beauv. ECHCG; common lambsquarters, Chenopodium album L. CHEAL; common purslane, Portulaca oleracea L. POROL; redroot pigweed, Amaranthus retroflexus L. AMARE; velvetleaf, Abutilon theophrasti Medicus ABUTH; sweet corn, Zea mays L. ‘GH0937’.
Field trials were conducted to evaluate the season long population dynamics and location (in leaf or on leaf surface) of an antibiotic resistant strain of the bacterium Pseudomonas syringae pv. tagetis (PST) applied to Canada thistle leaves. An application preceding 2 to 3 d of hot dry weather was compared to an application preceding 2 to 3 d of cool wet weather. Leaf samples were taken weekly to assess the population of PST found inside the leaves and on the leaf surface. While PST populations initially differed, populations were similar for both treatments one week after application. While this suggests that environment did not have a major impact, weather conditions for testing this hypothesis were not ideal. Over the first 35 d of the experiment, little rainfall was observed. PST populations were low and stable. However, rain events over the 40 d that followed resulted in great oscillations in mean PST populations and in some cases significant population increases. During dry periods, internal and total PST populations differed significantly, suggesting the external populations played a major part in population composition. However, the two sampling periods that closely followed three consecutive days of rainfall indicated internal populations were not significantly different from the total, suggesting that internal populations played the primary role in population composition. The results of this research provide evidence that rain events lead to overall PST population increases and to greater proportions of PST inside Canada thistle leaves, suggesting that it is better to apply PST during wet periods than dry.
Trifluralin is widely used for control of rigid ryegrass in no-till grain crops in southern Australia. Trifluralin must be incorporated into soil to be effective. Several field studies were conducted to evaluate the effect of different tillage systems on vertical seed distribution and efficacy and rate of loss of bioavailable trifluralin. Experiments were conducted during the growing seasons of 2004 and 2005 at two sites in South Australia: on the Roseworthy Campus farm of the University of Adelaide and near Minlaton on the Yorke Peninsula. The tillage systems at the Roseworthy Campus were minimum tillage (MinTill) and no-till using narrow points, whereas four direct-drill-seeding systems were used at Minlaton. Plastic beads were spread on the soil surface to simulate weed seeds. MinTill sowing buried more plastic beads than no-till, indicating that greater soil disturbance was caused by the MinTill system. Trifluralin efficacy was lower under no-till as compared to MinTill. A bioassay, based on response of oat roots, was used to quantify the concentrations of bioavailable trifluralin under different tillage systems. In both years at the Roseworthy Campus, loss of bioavailable trifluralin was greater under no-till than under MinTill; however, the rate of loss under both systems was much faster in 2004 than in 2005. In 2004, bioavailable trifluralin at 12 d after sowing under MinTill and no-till was 55 and 33% of the initial concentration, respectively. In 2005, bioavailable trifluralin remaining at 23 d after sowing was 86% under MinTill and 54% under no-till. At Minlaton in both years, bioavailable trifluralin was greater under tillage systems that provided the highest level of soil disturbance. These results demonstrate that reduced bioavailability of trifluralin occurs in no-till seeding systems, which could result in reduced weed control.
Field experiments were conducted to quantify functional relationships between giant ragweed density and sweet corn yield and ear traits. A rectangular hyperbolic model was fit to yield loss measured in terms of marketable ear mass, appropriate for the processing industry, and boxes of 50 marketable ears, relevant to the fresh market industry. The initial slope of the hyperbolic yield loss function (I ), which describes the linear portion of yield loss as weed density (weeds per square meter) approaches zero, was 119 for loss of ear mass and 97 for loss of boxes of ears. Furthermore, 10 of 12 ear traits including green ear mass, husked ear mass, ear length, filled ear length, ear width, number of kernels per row, number of rows, kernel depth, kernel mass, and kernel moisture content were significantly affected by giant ragweed interference.
Nomenclature: Giant ragweed, Ambrosia trifida L. AMBTR; sweet corn, Zea mays L. ‘GH0937’.
Varietal growth habit could play a key role in the competitiveness of crop plants with weeds. The relative competitiveness of two erect, two semierect, and two prostrate cowpea genotypes with a tall-growing (common sunflower) or a low-growing (common purslane) species was evaluated in 12 replacement-series experiments conducted in 2003 and 2004. Growth analysis of the six cowpea genotypes and two weed species were also conducted to investigate the relationship of competitiveness and growth. Cowpea genotype and competitor biomass were used to calculate relative yield total (RYT) and aggressivity indices (AI). RYT and AI means of six cowpea genotypes were compared using ANOVA, and an isotonic regression was used to confirm the relative competitive superiority of the cowpea growth types. All cowpea genotypes had similar RYTs when grown with sunflower or common purslane, indicating that cowpea used the same resources as sunflower or purslane. When grown with sunflower, erect and semierect genotypes had higher AI than prostrate genotypes. When grown with purslane, erect and prostrate genotypes had higher AI than semierect genotypes. The results were confirmed by isotonic regression tests on the respective AI order. Correlation and regression between AI and growth parameters showed that the relative growth rate (RGR), leaf area ratio (LAR), and height growth rate (HGR) explained 92% of the variation of AI when cowpeas were grown with sunflower and that leaf weight ratio (LWR) and biomass explained 82% of the variation of AI when cowpeas were grown with purslane. These experiments indicate that cowpea genotypes differ in their ability to compete with purslane or sunflower. Erect genotypes were the most competitive, suggesting that an erect growth habit may be more effective in suppressing weeds than a semierect or prostrate growth habit. These results are consistent with field experiments on the competitiveness of erect, semierect, and prostrate cowpea genotypes.
Nomenclature: Common purslane, Portulaca oleracea L. POROL; common sunflower, Helianthus annuus L. HELAN; cowpea, Vigna unguiculata (L.) Walp. ‘California Blackeye 5’, ‘Iron-Clay’, ‘Speckle Purple Hull’, ‘IT89KD-288’, ‘UCR 730’, and ‘UCR 779’ VIGSI.
Managing weeds in lawns using cultural practices such as mowing, irrigation, and fertilization may be important in integrated management. A field experiment evaluated the impact of cultural factors on weed populations in St. Augustinegrass turf. Irrigation treatments were daily to replace evapotranspiration (“Daily”), weekly to saturate the root zone only when wilted (“Conditional Weekly”), and as needed to saturate the root zone after severe wilt (“Severely Wilted”). Averaged over 3 yr, the Daily, Conditional Weekly, and Severely Wilted irrigation treatments resulted in 30, 6, and 2% dollarweed cover, respectively. Except for dollarweed and mat lippia, the largest cover of other weeds was under Severely Wilted irrigation. Fertilization rates were 0, 14, or 28 g N m−2 yr−1; in 2002, the highest fertilization rate had the smallest cover of weeds other than dollarweed. Mowing heights were 64, 89, or 114 mm; in 2003, the shortest mowing height had the smallest cover and dry weight of weeds other than dollarweed. After 3 yr of cultural management, most plots were excessively weedy, and turfgrass quality for all cultural management-treatment combinations, in the absence of herbicides, was unacceptable.
Nomenclature: Dollarweed or water pennywort, Hydrocotyle umbellata L. HYDUM; mat lippia, Phyla nodiflora (L.) Greene LIPNO; St. Augustinegrass, Stenotaphrum secundatum (Walt.) Kuntze STPSE.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere