Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Continuous use of herbicides has triggered a phenomenon called herbicide resistance. Nowadays, herbicide resistance is a worldwide problem that threatens sustainable agriculture. A study of over a decade on herbicides in Iran has revealed that herbicide resistance has been occurring since 2004 in some weed species. Almost all the results of these studies have been published in national scientific journals and in conference proceedings on the subject. In the current review, studies on herbicide resistance in Iran were included to provide a perspective of developing weed resistance to herbicides for international scientists. More than 70% of arable land in Iran is given over to cultivation of wheat, barley, and rice; wheat alone covers nearly 52%. Within the past 40 years, 108 herbicides from different groups of modes of action have been registered in Iran, of which 28 are for the selective control of weeds in wheat and barley. Major resistance to ACCase-inhibiting herbicides has been shown in some weed species, such as winter wild oat, wild oat, littleseed canarygrass, hood canarygrass, and rigid ryegrass. With respect to the broad area of wheat crop production and continuous use of herbicides with the sole mechanism of action of ACCase inhibition, the provinces of West Azerbaijan, Tehran, Khorasan, Isfahan, Markazi, and Semnan are at risk of resistance development. In addition, because of continuous long-term use of tribenuron-methyl, resistance in broadleaf species is also being developed. Evidence has recently shown resistance of turnipweed and wild mustard populations to this herbicide. Stable monitoring of fields in doubtful areas and providing good education and training for technicians and farmers to practice integrated methods would help to prevent or delay the development of resistance to herbicides.
Nomenclature: Haloxyfop-r-methyl ester; tribenuron methyl; hood canarygrass, Phalaris paradoxa L. PHAPA; littleseed canarygrass, Phalaris minor Retz. PHAMI; rigid ryegrass, Lolium rigidum Gaud. LOLRI; turnipweed, Rapistrum rugosum (L.) All. RASRU; wild mustard, Sinapis arvensis L. SINAR; wild oat, Avena fatua L. AVEFA; winter wild oat, Avena ludoviciana (Durieu) AVELU.
Determining the mechanisms of herbicide resistance in weeds allows for the development and implementation of applied management practices aimed to control and to prevent further spread of herbicide-resistant populations in crop fields. This research was conducted to determine propanil resistance and cross-resistance to other photosystem II (PSII) inhibitors in ricefield bulrush biotypes and to elucidate the mechanism of propanil resistance. To this end, propanil-resistant (R) and propanil-susceptible (S) biotypes were selected from field-collected populations after propanil spraying at the field rate, and whole-plant, dose–response experiments were conducted to evaluate cross-resistance to PSII inhibitors and interactions between propanil and the insecticides malathion and carbaryl. In addition, the psbA gene from R and S biotypes was sequenced for amino acid alterations following polymerase chain reaction (PCR) amplification. Plant survival data indicated the R biotype displayed a 14-fold increase in propanil resistance relative to the susceptible (S) biotype. In addition, the propanil-R biotype also had increased resistance to the PSII-inhibitors bromoxynil, diuron, and metribuzin but was more susceptible to bentazon than were propanil-S plants. Synergism between propanil and the insecticides carbaryl and malathion was greater in the S biotype than it was in the R biotype, indicating that, unlike propanil resistance in weedy grasses, enhanced degradation of the herbicide molecule is not a mechanism of resistance for propanil in ricefield bulrush. A Val219 to Ile substitution in the propanil-R chloroplast D1 protein was identified following sequencing of the psbA gene. This research suggests a single-point mutation at the target site causes resistance to propanil, diuron, metribuzin, and bromoxynil but increasing susceptibility to bentazon in propanil-R ricefield bulrush, a novel Val219–Ile feature. To our knowledge, this is the first instance of propanil resistance in weeds because of a mechanism other than enhanced herbicide metabolism. Tank-mixing bentazon and propanil, where permitted, can control both propanil-R and propanil-S biotypes.
The objective of this study was to evaluate the response of hairy beggarticks plants to different doses of glufosinate ammonium and the range in sensitivities of the plants and their progenies to the herbicide. Three studies were conducted, all in a greenhouse and repeated at different times. In the first study, two experiments were conducted to examine the dose–response curve, and the treatments were seven different doses of the herbicide glufosinate ammonium (0, 50, 100, 200, 400, 800, and 1,600 g ai ha−1), with four replications each. In the second study, which examined the range in sensitivity of hairy beggarticks to glufosinate ammonium, 44 plants were sprayed with a dose of 200 g ai ha−1 of the herbicide. Finally, in the third study, the range in sensitivity of the progeny of hairy beggarticks to glufosinate ammonium was investigated; in this experiment, the progenies of seven of the previous plants were sprayed with 200 g ai ha−1 of herbicide. The ammonium contents in the tissues were measured and percent injury wase visually assessed. Ammoniun content in hairy beggarticks leaves was increased more than seven times by glufosinate application and the maximum ammonium content was observed for the highest dose of the herbicide. Variability existed in the ammonium content among the individuals of the population of hairy beggarticks; however, the behavior was not replicated in the same way in the progenies. The survival of the plants after application of the herbicide allows the production of progenies with wide variability in their sensitivity to the product, independent of the behavior for the progenitor plants.
Nomenclature: Glufosinate ammonium; hairy beggarticks, Bidens pilosa L.
The susceptibility to glyphosate and genetic diversity based on intersimple sequence repeat markers were characterized for 17 tropical sprangletop populations collected from two separate regions mainly in Persian lime groves in Veracruz, Mexico. The whole-plant dose response together with shikimic acid assays indicated different levels of glyphosate resistance in those populations. Genetic diversity values (h) estimated using POPGENE ranged from 0.119 to 0.198 and 0.117 to 0.214 within susceptible and resistant populations, respectively. The average genetic diversity (HS) within the susceptible populations was 0.157, and the total genetic diversity (HT) was 0.218. The HS of the resistant populations was 0.144, and the HT was 0.186. The analysis of molecular variance based on the response to glyphosate indicated that most of the genetic variation was found within groups of susceptible and resistant populations (90% of the genetic variation), whereas 10% or less was among groups. The high level of genetic diversity between glyphosate-resistant tropical sprangletop populations from distant and adjacent locations is likely due to both short- and long-distance seed dispersal and independent evolutionary events in tropical sprangletop populations among Persian lime groves in Veracruz.
Nomenclature: Glyphosate; tropical sprangletop, Leptochloa virgata (L.) P. Beauv.; Persian lime, Citrus latifolia Tan.
A population of junglerice from Sunflower County, MS, exhibited resistance to fenoxaprop-P-ethyl. An 11-fold difference in ED50 (the effective dose needed to reduce growth by 50%) values was observed when comparing the resistant population (249 g ae ha−1) with susceptible plants (20 g ae ha−1) collected from a different field. The resistant population was controlled by clethodim and sethoxydim at the field rate. Sequencing of the acetyl coenzyme A carboxylase, which encodes the enzyme targeted by fenoxaprop-P-ethyl, did not reveal the presence of any known resistance-conferring point mutations. An enzyme assay confirmed that the acetyl coenzyme A carboxylase in the resistant population is herbicide sensitive. Further investigations with two cytochrome P450 inhibitors, malathion and piperonyl butoxide, and a glutathione-S-transferase inhibitor, 4-chloro-7-nitrobenzofurazan, did not indicate involvement of any metabolic enzymes inhibited by these compounds. The absence of a known target-site point mutation and the sensitivity of the ACCase enzyme to herbicide show that fenoxaprop-P-ethyl resistance in this population is due to a non–target-site mechanism or mechanisms.
The supply of soil resources is critical for the establishment and long-term competitive success of a plant species. Although there is considerable research on the effects of water supply on crop growth and productivity, there is little published research on the comparative response of crops and weeds to limiting soil water supply. The objective of this research was to determine the growth and transpiration efficiency of corn and velvetleaf at three levels of water supply. One corn or velvetleaf plant was grown in a large pot lined with plastic bags. When seedlings reached 10 cm, bags were sealed around the base of the plant, so the only water loss was from transpiration. Daily transpiration was measured by weighing the pots at the same time each day. The experiment was conducted in the fall of 2007 and in the spring of 2008. Four replicates of each species–water treatment were harvested periodically to determine biomass accumulation and leaf area. The relationship between cumulative aboveground biomass and water transpired was described using a linear function in which the slope defined the transpiration efficiency (TE). Corn TE was greater than velvetleaf TE in all treatments during both trials. In the fall trial, corn TE was 6.3 g kg−1, 47% greater than that of velvetleaf TE. In the spring trial, TEs of both species were lower overall, and corn TE increased with declining water supply. Corn produced more biomass and leaf area than velvetleaf did at all water-supply levels. Velvetleaf partitioned more biomass to roots compared with shoots during early growth than corn did. The ability of corn to generate more leaf area and its investment in a greater proportion of biomass into root growth at all levels of water supply may enable it to more-effectively avoid velvetleaf interference under all levels of soil-water supply.
Laboratory experiments were carried out to determine the effect of several environmental factors on seed germination of feather fingergrass, one of the most significant emerging weeds in warm regions of the world. Seed germination occurred over a broad range of temperatures (17/7, 25/10, and 30/20 C), but germination being highest at alternating temperatures of 30/20 C under both 12 h light/12 h dark and 24 h dark conditions. Although seed germination was favored by light, some seeds were capable of germinating in the dark. Increasing salt stress decreased seed germination until complete inhibition was reached at 250-mM sodium chloride. Germination decreased from 64 to 0.7% as osmotic potential decreased from 0 to −0.4 MPa, and was completely inhibited at −0.6 MPa. Higher seed germination (> 73%) was observed in the range of pH 6.4 to 8 than the other tested pH levels. Heat shock had a significant effect on seed germination. Germination of seeds placed at 130 C for 5 min was completely inhibited for both dry and presoaked seeds. The results of this study will help to develop protocols for managing feather fingergrass, and to thus avoid its establishment as a troublesome weed in economically important cropping regions.
Studies suggest that disturbance-induced reductions in soil seedbank density are diminished by periods of water scarcity after soil disturbance; however, this hypothesis has yet to be tested. The objectives of this study were (1) to determine the effects of increasing time between soil disturbance and flood irrigation on disturbance-induced reductions in soil seedbank density, and (2) to identify specific soil moisture levels that cause seedbank reductions under flood irrigation. Weed species in this study were junglerice, Palmer amaranth, and yellow foxtail. For Objective 1, artificial seedbanks with known numbers of seeds were disturbed 10, 3, or 0 d prior to flood irrigations under field conditions. For Objective 2, seeds were buried in soil mesocosms that were hydrated to specific soil water potentials (flooded, 0 kPa, −30 kPa, −60 kPa, and −180 kPa) and placed in laboratory conditions favorable for germination. For both objectives, seeds were recovered to determine the percentages of buried seeds that survived the disturbance or moisture treatments. Results for the field study indicated that soil disturbances reduced seedbank persistence of Palmer amaranth but did not affect seedbank persistence of junglerice and yellow foxtail. Disturbance-induced reductions in seedbank density were greatest when soil was disturbed 0 and 3 d prior to flood irrigations. For the laboratory study, results showed that waterlogged soil was not required for seedbank losses because rates of seedbank persistence were greater in saturated soils (0 kPa and flooded) compared to the lower moisture levels. These studies indicate that delays in irrigation can reduce the seedbank reduction potentials of soil disturbance events. Further, irrigation timing effects on disturbed soil seedbanks are likely to occur in all irrigation systems, including those that reduce the amount of water applied compared to flood irrigation.
Nomenclature: Junglerice, Echinochloa colona (L.) Link ECHCO; Palmer amaranth, Amaranthus palmeri S. Wats. AMAPA; yellow foxtail, Setaria pumila (Poir.) Roemer & J. A. Schultes SETLU.
Efficient natural dispersal of herbicide-resistance alleles via seed and pollen can markedly accelerate the incidence of herbicide-resistant weed populations across an agroecoregion. Studies were conducted in western Canada in 2014 and 2015 to investigate pollen- and seed-mediated gene flow in kochia. Pollen-mediated gene flow (PMGF) from glyphosate-resistant (GR) to non-GR kochia was quantified in a field trial (hub and spoke design) at Saskatoon, Saskatchewan. Seed-mediated gene flow of acetolactate synthase (ALS) inhibitor-resistant kochia as a function of tumbleweed speed and distance was estimated in cereal stubble fields at Lethbridge, Alberta and Scott, Saskatchewan. Regression analysis indicated that outcrossing from GR to adjacent non-GR kochia ranged from 5.3 to 7.5%, declining exponentially to 0.1 to 0.4% at 96 m distance. However, PMGF was significantly influenced by prevailing wind direction during pollination (maximum of 11 to 17% outcrossing down-wind). Seed dropped by tumbleweeds varied with distance and plant speed, approaching 90% or more (ca. 100,000 seeds or more) at distances of up to 1,000 m and plant speeds of up to 300 cm s−1. This study highlights the efficient proximal (pollen) and distal (seed) gene movement of this important GR weed.
The influence of temperature, light, solution pH, water stress, salt stress, and burial depth on seed germination and seedling emergence of catchweed bedstraw and the sensitivity of that weed to commonly available herbicides in China were studied in laboratory and greenhouse. Germination occurred at day/night temperatures from 5/0 C to 30/25 C, with optimum germination at 15/10 C. Catchweed bedstraw germinated equally well under a 12-h photoperiod and continuous darkness; however, a 24-h photoperiod inhibited seed germination. Catchweed bedstraw seed is moderately sensitive to osmotic potential and salt stress, with 15 and 3% germination rates at an osmotic potential of −0.5 Mpa and salinity level of 120 mM, respectively. Maximum seed germination was observed in near neutral pH; germination was greater than 80% over a broad pH range from 5 to 8. Seedling emergence of the seeds buried at a depth of 1 cm was higher (74%) than those placed on the soil surface (20%), but declined with burial depth increasing. Few (10%) seedlings emerged when seeds were placed at a depth of 5 cm. Bensulfuron-methyl, and ethametsulfuron-methyl applied PRE and tribenuron-methyl, fluroxypyr, and florasulam applied POST can be used to provide greater than 80% control of catchweed bedstraw. The results of this study have contributed to more complete understanding of the germination and emergence of catchweed bedstraw.
Nomenclature: Catchweed bedstraw, Galium aparine L.
Integrated weed management (IWM) relies upon multiple chemical, physical, or biological weed management techniques to achieve an acceptable level of weed control. Agents that selectively suppress weeds but not crops and that can be manipulated in agriculture will be promising components for inclusion in IWM. We used a meta-analytic approach to investigate the potential of arbuscular mycorrhizal fungi (AMF) to contribute to IWM. We quantified the effect of crop and weed host status (strong and weak AMF hosts are divided in this study by a 10% root length colonization threshold), AMF diversity (single vs. mixed), and soil N and P fertility management on plant mycorrhizal growth responses (MGRs). Our results indicated that weak host weeds had consistently lower MGRs than strong host crops in both controlled and field conditions. Moreover, these differences in MGRs between weak host weeds and strong host crops were more pronounced under mixed AMF inoculum and low N and P nutrient availability. In contrast, MGR of strong host weeds was not different from strong host crops in general. However, we observed a wide range of MGRs among strong host weeds, some of which had much lower MGRs than strong host crops. In addition, in the presence of N and P fertilizers, strong host crops had a stronger positive response to AMF than strong host weeds. Thus, our meta-analysis indicates that AMF have potential to contribute to weed control by direct and indirect pathways: directly suppress weak host weeds, and indirectly suppress some strong host weeds mediating by competitive effects exerted by strong host crops. We suggest that management practices affecting AMF diversity and crop and weed mycorrhizal responses could be chosen to improve the contribution of AMF to IWM. Better understanding is needed of crop–weed–AMF interactions and management practices that enhance this form of weed management.
Herbicide-resistant (R biotype) and -sensitive (S biotype) individuals were identified from the same population, and seed was increased for each biotype for three generations. We conducted laboratory experiments to determine the effects of temperature, light, salt stress, osmotic stress, pH, and burial depth on the germination and emergence of resistant and sensitive biotypes of Japanese foxtail. The results revealed that there was no difference in the final germination rate between the two biotypes under different temperature conditions, but time to obtain 50% germination or emergence (tE50) and mean germination time of the R biotype were higher than that of the S biotype at 10 C and 15/10 C 12-h day/night regime. In dark conditions, the final germination rate of the S biotype was higher and lower than that of the R biotype at 10 and 25 C, respectively. The overall germination rate of the R biotype was lower than that in the S biotype, and extended germination time was required in extreme conditions, such as 250 mM NaCl and −0.4 MPa osmotic potential. The change in environmental pH had no effect on the germination of the two biotypes. Emergence of the R biotype was lower than the S biotype when seed was buried at least 8 cm deep in an organic matter substrate. This study demonstrated the pleiotropic effects of a resistance allele on seed germination and emergence under different environmental conditions. Deep tillage could be used to reduce the growth and spread of resistant Japanese foxtail individuals.
Nomenclature: Fenoxaprop-P-ethyl; Japanese foxtail, Alopecurus japonicus Steud.
Burning nettle is a noxious weed that commonly infests coastal California vegetable fields. Weed control programs for lettuce and fresh spinach grown in this area do not adequately control burning nettle, and escaped weeds that mature are highly problematic during hand weeding and harvesting. Information on the biology and ecology of burning nettle is limited, and work was conducted to develop information about this weed. The objectives of this study were to evaluate the effect of temperature on burning nettle germination and to determine its base temperature value, to characterize the germination pattern of this weed and seedbanks under local California coastal conditions, and to estimate the optimal timing for burning nettle removal by herbicides and physical methods. The upper optimal temperature for burning nettle germination was 22.8 C, but there was no difference in the final germination percentage between 4 and 22.8 C. The base temperature was determined to be 3 ± 0.2 C, and this information allowed the development of temperature-based optimal control timing models. In the field, burning nettle emerged throughout the year without any seasonal pattern, and germinable seeds were also found in the seedbank throughout the year. Burning nettle was able to complete a growth cycle throughout the year in coastal California. Burning nettle has a short growth cycle that allows it to set viable seeds within 466 ± 13 growing degree days (GDD), and this timing is critical for burning nettle removal by herbicides, cultivation, or hand weeding. The optimal timing for phenmedipham application at 180 g ai ha−1 was estimated to be 205 GDD. The germination and seedbank field studies indicate why burning nettle is so well adapted to the mild climate of coastal California. However, results presented here suggest strategies to reduce the burning nettle seedbank, improve its control, and allow more efficient lettuce and fresh spinach production.
Nomenclature: Phenmedipham; burning nettle, Urtica urens L., lettuce, Lactuca sativa L. var., spinach, Spinacia oleracea L. # SPQOL.
The increasing occurrence of herbicide resistance, along with no new herbicide modes of action developed in over 30 yr, have increased the need for nonherbicidal weed management strategies and tactics. Harvest weed seed control (HWSC) practices have been successfully adopted in Australia to manage problematic weeds. For HWSC to be effective, a high proportion of weed seeds must be retained on the plant at crop maturity. This 2-yr (2014, 2015) study evaluated seed shatter of wild oat, green foxtail, wild mustard, and cleavers in both an early (field pea) and late (spring wheat) maturity crop in field experiments at Scott, Saskatchewan. Seed shatter was assessed using shatter trays collected once a week during crop ripening stage, as well as at two crop maturation or harvest stages (swathing, direct-combining). Seed shatter differed among weed species, but was similar between crops at maturity: ca. 30% for wild oat, 5% for cleavers, < 2% for wild mustard, and < 1% for green foxtail. Overall, seed shatter of wild oat occurred sooner and at greater levels during the growing season compared with the other weed species. Viability of both shattered and plant-retained seeds was relatively high for all species. The small amount of seed shatter of cleavers, wild mustard, and green foxtail suggests that these species may be suitable candidates for HWSC. Due to the amount and timing of wild oat seed shatter, HWSC may not reduce population abundance of this grassy weed.
Nomenclature: Cleavers, Galium spp. (false cleavers, G. spurium L. GALSP; and catchweed bedstraw, G. aparine L. GALAP); green foxtail, Setaria viridis (L.) Beauv. SETVI; wild mustard, Sinapis arvensis L. SINAR; wild oat, Avena fatua L. AVEFA; field pea, Pisum sativum L.; spring wheat, Triticum aestivum L.
Italian ryegrass populations investigated in this study were harvested in an alfalfa-based cropping system. In that system, the agronomic practices and chemical weed management, based on the use of aryloxyphenoxy-propionates herbicides (i.e., quizalofop ethyl ester), were optimized to obtain a dual seed–forage production. Five of seven populations tested were confirmed resistant to quizalofop ethyl ester with resistance indexes ranging from 4.5 to >209. Both target- and nontarget-site resistance mechanisms were most likely involved. Three allelic variants were detected (Ile-1781–Leu, Trp-2027–Cys, and Ile-2041–Asn) in four resistant populations, whereas no known mutations were found in one resistant population. The herbicide treatment on Italian ryegrass plants at different phenological stages suggested that to control regrowth, it is necessary to use two to fives times the herbicide dose suitable for younger plants. This situation is encountered in fields when Italian ryegrass plants need to be controlled to maximize the alfalfa seed production, and it is comparable to using a sublethal herbicide dose, leading to the selection of herbicide-resistant biotypes. In such a situation, the cropping system is not sustainable, and integrated weed management should be implemented to deplete the soil weed seed bank and prevent new weed seed production.
Nomenclature: Quizalofop ethyl ester; Italian ryegrass, Lolium perenne L. ssp. multiflorum (Lam.) Husnot, LOLMU; alfalfa, Medicago sativa L.
Japanese foxtail is a predominant tetraploid grass weed in wheat and oilseed rape fields in eastern China. In China, pyroxsulam is mainly used to manage annual grass weeds, especially those resistant to acetyl coenzyme A carboxylase (ACCase)-inhibiting herbicides. Using dose–response studies, a pyroxsulam-resistant population, ACTC-1, was identified with a resistance index value of 58. Additionally, ACTC-1 was cross-resistant to sulfonylureas, imidazolinones, triazolopyrimidines, pyrimidinyl-benzoates, and sulfonylaminocarbonyl-triazolinones and multiresistant to ACCase and photosystem II inhibitors. Sequence analysis revealed four gene fragments encoding acetolactate synthase (ALS) from ACTC-1, and three from JNXW-1, a pyroxsulam-sensitive population. An Asp-376-Glu substitution was found in ALS1;2 and an Ile-2041-Asn in Acc1;1, which may be responsible for its resistance to pyroxsulam and ACCase inhibitors, respectively. In vitro assays of ALS activity revealed that in ACTC-1, the sensitivity of ALS to pyroxsulam was lower, and the basal ALS activity was twofold higher than that of sensitive population JNXW-1. Additionally, the combined application of pyroxsulam with malathion or piperonyl butoxide increased the sensitivity of ACTC-1 to pyroxsulam, although it could not completely overcome the resistance. It was inferred that both target-site-based resistance and nontarget-site-based resistance may be involved in the resistance to pyroxsulam.
Nomenclature: Malathion; piperonyl butoxide (PBO); pyroxsulam; Japanese foxtail, Alopecurus japonicas Steud; birdsrape mustard, Brassica campestris L.; wheat, Triticum aestivum L.
Zhenyi Li, Kallie C. Kessler, Marcelo Rodrigues Alves de Figueiredo, Scott J. Nissen, Todd A. Gaines, Philip Westra, Rene C. Van Acker, Christopher Hall, Darren E. Robinson, Nader Soltani, Peter H. Sikkema
Halosulfuron-methyl, a sulfonylurea herbicide, was registered for broadleaf weed control in dry bean. This herbicide has an adequate margin of crop safety in white bean, but causes unacceptable injury to adzuki bean. Halosulfuron-methyl absorption, translocation, and metabolism were evaluated in white and adzuki bean using radiolabeled herbicide to determine if differences in these parameters could explain the difference in crop safety between these two species. Adzuki bean had more rapid halosulfuron-methyl absorption than white bean. Adzuki bean reached 90% absorption (t90) 26.2 h after treatment (HAT), whereas white bean required 40.1 HAT to reach t90. The maximum halosulfuron-methyl absorption was higher in adzuki bean (75.7%) than in white bean (65.3%). More 14C-halosulfuron was translocated to the apex, first trifoliate, stem above the treated leaf, and roots in aduzki bean than in white bean. The maximum radioactivity translocated out of treated leaf was higher in adzuki bean (17.7%) than in white bean (12.1%). Halosulfuron-methyl was broken down to the same metabolites in white and adzuki bean. The half-life of halosulfuron-methyl in adzuki bean was 16 HAT, compared with less than 6 HAT in white bean. More herbicide remained as the free acid in adzuki bean compared with white bean over the entire 48-h time course. The differential tolerance of white and adzuki bean to halosulfuron can be attributed to greater absorption and translocation and decreased metabolism in adzuki bean.
The objective of this study was to evaluate weed control, crop yields, potential soil loss, and net returns to management of an integrated weed management system in no-till corn and soybean compared to an herbicide-based strategy. The integrated weed management system reduced herbicide inputs by delayed cover crop termination, herbicide banding, and high-residue cultivation (reduced herbicide [RH]), while the other system used continuous no-tillage and herbicides to control weeds (standard herbicide [SH]). Research was conducted within the Penn State Sustainable Dairy Cropping Systems Experiment, where corn and soybean are each planted once in a 6-yr crop rotation. In this 3-yr study, weed density and biomass were often greater under RH management, but weed biomass never exceeded 19 g m−2 in corn and 21 g m−2 in soybean. Corn yield and population did not differ in any year, and net returns to management were $33.65 ha−1 higher in RH corn due to lower herbicide costs and slightly, though not significantly, higher yields. Soybean yield was lower in RH compared to SH in 2 of 3 yr, and was correlated with soybean population and cover crop residue. Net financial returns were $43.69 ha−1 higher in SH soybean compared to RH. Predicted soil loss never exceeded T (maximum allowable soil loss) for any treatment and slope combination, though soil loss was 100% greater on a 10% slope under RH management (vs. SH) due to cultivation.
The control of glyphosate-resistant (GR) horseweed (Conyza canadensis) in soybean has been variable with glyphosate plus saflufenacil. The objective of this research was to determine the biologically effective rate (BER) of saflufenacil, saflufenacil mixed with glyphosate, and metribuzin mixed with saflufenacil and glyphosate applied preplant (PP) for the control of GR horseweed in no-till soybean; a study was conducted to determine each of the three treatments. For each study, seven field sites infested with GR horseweed were used over a 2-yr period (2014, 2015). Saflufenacil alone at 25 and 36 g ai ha−1 provided 90 and 95% control of GR Horseweed 8 wk after application, while the BER to achieve 98% control was outside of the treatment range tested. The saflufenacil plus glyphosate (900 g ai ha−1) BER experiment found less saflufenacil was required as 25, 34, and 47 g ha−1 provided 90, 95, and 98% control of GR horseweed respectively. The metribuzin BER experiment found 61, 261, and 572 g ha−1 was required to provide 90, 95 and 98% control of GR horseweed, respectively, mixed with saflufenacil (25 g ha−1) and glyphosate (900 g ha−1). The addition of metribuzin with the recommended rate of saflufenacil (25 g ha−1) plus glyphosate improved control and a second effective herbicide mode of action for the control of GR horseweed. The use of a three-way herbicide mixture can be an effective weed management strategy to control GR horseweed in soybean.
Anecdotal observations of improved glyphosate efficacy on glyphosate-resistant (GR) tall waterhemp populations in corn production compared with soybean suggested the presence of nitrogen (N) fertilizer may influence the expression of glyphosate resistance. Greenhouse and field experiments were conducted to determine the influence of soil-applied nitrogen fertilizer on the growth rate and sensitivity of glyphosate-susceptible (GS) and GR tall waterhemp and Palmer amaranth. The addition of supplemental fertilizer increased the relative growth rate (plant height and shoot volume), number of nodes, and percentage of shoot nodes with axillary branches on GS and GR biotypes of both weed species. The axillary bud activity was increased 52 and 8% with increasing N for the GR and GS biotypes of tall waterhemp and Palmer amaranth, respectively. The GS populations of tall waterhemp and Palmer amaranth were more sensitive to glyphosate in the greenhouse under increased fertilizer levels compared with no fertilizer. Additionally, GR tall waterhemp was more sensitive to glyphosate under the higher fertilizer treatments, which resulted in a reduction in the calculated resistance factor (RF) from 27.8 under no fertilizer to 4.7 for the high fertilizer treatment. The RF for GR Palmer amaranth was not influenced by the fertilizer treatments in the greenhouse. Field experiments demonstrated that glyphosate efficacy may be greater on GR populations of tall waterhemp and Palmer amaranth under high N conditions, but these results were not consistent and most likely were influenced by soil moisture in 2012, which was more limiting than N supply. This research implies that soil fertility can influence the sensitivity of some GR weed species to glyphosate and the RF. Therefore, the evolution and management of GR weed species in commercial crop production may be influenced by the nutrient status of the soil and the use of supplemental fertilizers.
Managing agricultural pests with an incomplete understanding of the impacts that tactics have on crops, pests, and other organisms poses risks for loss of short-term profits and longer-term negative impacts, such as evolved resistance and nontarget effects. This is especially relevant for the management of weeds that are viewed almost exclusively as major impediments to crop production. Seldom considered in weed management are the benefits weeds provide in agroecosystems, which should be considered for optimal decision-making. Integration of weed costs and benefits will become increasingly important as management for pests transitions away from nearly complete reliance on herbicides and transgenic crop traits as the predominant approach for control. Here, we introduce a weed-management decision framework that accounts for weed benefits and exemplify how in-crop weed occurrence can increase crop yields in which a highly damaging insect also occurs. We highlight a case study showing how management decision-making for common milkweed, which is currently controlled primarily with glyphosate in herbicide-tolerant corn, can be improved by integrating management of the European corn borer (ECB), which is currently controlled primarily by the transgenic toxin Cry1 in Bacillus thuringiensis corn. Our data reveal that milkweed plants harboring aphids provide a food source (honeydew) for parasitoid wasps, which attack ECB eggs. Especially at high ECB population densities (> 1 egg mass leaf−1), maintaining low milkweed densities (< 1 stem m−2), effectively helps to minimize yield losses from ECB and to increase the economic injury level of this aggressive perennial weed. In addition, milkweed is the host for the monarch butterfly, so breeding-ground occurrences of the plant, including crop fields, may help sustain populations of this iconic insect. Using a more-holistic approach to integrate the management of multiple crop pests has the capacity to improve decision-making at the field scale, which can improve outcomes at the landscape scale.
Nomenclature: Bt, Bacillus thuringiensis Berliner; glyphosate; common milkweed, Asclepias syriaca L.; corn, Zea mays L.; European corn borer, Ostrinia nubilalis Hübner; milkweed aphids, Aphis asclepiadis Fitch, Aphis nerii Boyer de Fonscolome, and Myzocallis asclepiadis Monel; monarch butterfly, Danaus plexippus L.; Trichogramma wasp, Trichogramma ostriniae Peng and Chen
Indaziflam is a cellulose biosynthesis-inhibiting herbicide for annual weed control in various agricultural systems. Sporadic cases of unacceptable injury to desirable plants have been reported after indaziflam application, which may have been due to conditions favoring increased indaziflam–soil bioavailability. Research was conducted from 2013 to 2015 on a sandy soil to elucidate the effects of soil organic matter content (SOMC) and soil volumetric water content (SVWC) on indaziflam–soil bioavailability. Indaziflam was applied (50 or 100 g ha−1) at fall only, fall plus spring, and spring only timings to plots in a factorial arrangement of SOMC, pre–indaziflam application (PrIA) SVWC, and post–indaziflam application (PoIA) SVWC. After application, field soil cores were collected for a subsequent greenhouse bioassay experiment, where foliage mass reduction of perennial ryegrass seeded from 0 to 15 cm soil depth was used as an indicator of indaziflam–soil bioavailability throughout the profile. Significant edaphic effects were observed at 0 to 2.5, 2.5 to 5, and 5 to 7.5 cm depths, with increased bioavailability at low compared with high SOMC. Pre–indaziflam application SVWC did not affect bioavailability, whereas PoIA high SVWC increased indaziflam–soil bioavailability at 2.5 to 7.5 cm depth compared with PoIA low SVWC. Low SOMC–PoIA high SVWC decreased perennial ryegrass foliage mass 40 and 37% at 5 to 7.5 cm depth from cores collected 10 and 14 wk after treatment, respectively, whereas reductions from all other SOMC–PoIA SVWC combinations were < 12% and did not vary from each other. Pearson's correlation coefficients showed a moderate, positive relationship between perennial ryegrass mass reductions at 0 to 2.5, 2.5 to 5, 0 to 5, and 0 to 10 cm depths and hybrid bermudagrass cover reduction, which suggests conditions favoring increased indaziflam–soil bioavailability can adversely affect plant growth. Data from this research will aid land managers to use indaziflam effectively without adversely affecting growth of desirable species.
Olive production in the southeastern United States has recently begun to increase from demand for locally produced virgin olive oil. With no established commercial production as a reference, information about the effects of indaziflam residual herbicide on newly established trees was evaluated over time for up to 3 yr on loamy sand soils. Multiple spring and autumn applications of indaziflam at different rates were applied to the same newly planted or 1-yr-old olive trees in different experiments in consecutive years. Visual injury, height, and caliper diameter measures were taken monthly during the growing season up to six times. Regression analysis of treatments over time indicated no differences in olive tree growth for plots treated with indaziflam at 38, 75, or 150 g ai ha−1 up to five times in 3 yr, compared with nontreated controls. This information will be beneficial as olive growers seek viable weed control options when establishing new groves in the region.
Nomenclature: Indaziflam; olive, Olea europaea L. ssp. europaea.
The rise of on-line open access (OA) has profound implications for academic publishing, not least the shift from subscribers to authors as the primary transactional partners for peer-reviewed journals. Although OA offers many benefits, it also paves the way for predatory publishers, who exploit the author-as-customer model to obtain revenue from author fees while providing few of the editorial services associated with academic publishing. Predatory journals publish papers with little or no peer review, and often disguise their real geographical location while exaggerating their scope and editorial expertise. Such journals also attempt to attract authors by promising unrealistically rapid editorial decisions while falsely claiming peer review, and fabricating impact factors and inclusion in academic indexes. The explosive increase in predatory OA journals is not only a risk to inexperienced authors, but also threatens to undermine the OA model and the legitimate communication of research.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere