Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Cover crop acreage has substantially increased over the last few years due to the intent of growers to capitalize on federal conservation payments and incorporate sustainable practices into agricultural systems. Despite all the known benefits, widespread adoption of cover crops still remains limited due to potential cost and management requirements. Cover crop termination is crucial, because a poorly controlled cover crop can become a weed and lessen the yield potential of the current cash crop. A field study was conducted in fall 2015 and 2016 at the Arkansas Agricultural Research and Extension Center in Fayetteville to evaluate preplant herbicide options for terminating cover crops. Glyphosate-containing treatments controlled 97% to 100% of cereal rye and wheat, but glyphosate alone controlled less than 57% of legume cover crops. The most effective way to control hairy vetch, Austrian winterpea, and crimson clover with glyphosate resulted from mixtures of glyphosate with glufosinate, 2,4-D, and dicamba. Higher rates of auxin herbicides improved control in these mixtures. Glufosinate alone or in mixture controlled legume cover crops 81% or more. Paraquat plus metribuzin was effective in terminating both cereal and legume cover crops, with control of cereal cover crops ranging from 87% to 97% and control of legumes ranging from 90% to 96%. None of these herbicides or mixtures adequately controlled rapeseed.
Research was conducted to evaluate the sensitivity of cover crops to a low rate of soil-applied herbicides and investigate the likelihood of herbicide carryover to fall-seeded cover crops following an irrigated corn crop. In the sensitivity study, herbicides were applied at a 1/16× rate (to simulate four half-lives) 1 d after cover crop planting, whereas for the carryover study residual herbicides were applied at a 2× rate at the maximum label corn height or growth stage and cover crops sown immediately after corn harvest. In the sensitivity experiment, atrazine, diuron, fluridone, fomesafen, metribuzin, pyrithiobac, and sulfentrazone reduced emergence of the leguminous cover crops Austrian winterpea, crimson clover, and hairy vetch. However, reduced biomass production of leguminous cover crops in the spring was only observed for atrazine, fluridone, and pyrithiobac. For rapeseed, atrazine, flumioxazin, fluridone, pyrithiobac, pyroxasulfone, sulfentrazone, and tembotrione reduced emergence, but biomass production was reduced only by atrazine and fluridone. Conversely, wheat, cereal rye, barley, oats, and triticale were not affected by soil-applied herbicides. Barley was the only cereal cover crop that showed biomass reduction due to the application of flumioxazin, fluridone, mesotrione, S-metalochlor, and sulfentrazone. In the carryover study, with the exception of crimson clover, Austrian winterpea, cereal rye, hairy vetch, rapeseed, and wheat showed no negative affect on biomass production following a 2× rate of postemergence-applied residual herbicide in corn.
Glyphosate-resistant (GR) and multiple herbicide—resistant (groups 2 and 9) Canada fleabane have been confirmed in 30 and 23 counties in Ontario, respectively. The widespread incidence of herbicide-resistant Canada fleabane highlights the importance of developing integrated weed management strategies. One strategy is to suppress Canada fleabane using cover crops. Seventeen different cover crop monocultures or polycultures were seeded after winter wheat harvest in late summer to determine GR Canada fleabane suppression in corn grown the following growing season. All cover crop treatments seeded after wheat harvest suppressed GR Canada fleabane in corn the following year. At 4 wk after cover crop emergence (WAE), estimated cover crop ground cover ranged from 31% to 68%, a density of 124 to 638 plants m-2, and a range of biomass from 29 to 109 g m-2, depending on cover crop species. All of the cover crop treatments suppressed GR Canada fleabane in corn grown the following growing season from May to September compared to the no cover crop control. Among treatments evaluated, annual ryegrass (ARG), crimson clover (CC)/ARG, oilseed radish (OSR)/CC/ARG, and OSR/CC/cereal rye (CR) were the best treatments for the suppression of GR Canada fleabane in corn. ARG alone or in combination with CC provided the most consistent GR Canada fleabane suppression, density reduction, and biomass reduction in corn. Grain corn yields were not affected by the use of the cover crops evaluated for Canada fleabane suppression.
Weed control is a challenging aspect of pumpkin production. Winter rye mulches may offer growers a means to manage weeds in pumpkin; however, rye degradation leads to an immobilization of soil nitrogen. Combining winter rye with a nitrogen fixing legume such as hairy vetch is an interesting option that may solve this problem. Twelve combinations including three hairy vetch seeding rates, two termination dates and the use or not of glyphosate before rolling cover crops were studied during the 2013 and 2014 growing seasons at the Laval University Agronomic Station in Saint-Augustin-de-Desmaures, Quebec, Canada to evaluate weed control and effects on pumpkin production. Adding hairy vetch to winter rye provided no benefits because of severe winterkill of the legume. Using glyphosate was necessary to prevent rye regrowth. Pumpkin growth was better and yields were higher than in the plots were no glyphosate was used. Mulches established at flowering (Zadoks 69) provided about 2,000 kg ha-1 more aboveground dry biomass than at early heading (Zadoks 51). This high biomass was essential in glyphosate treated plots in order to maintain excellent weed control throughout the growing season. When compared with the no-mulch weed-free control, yield in Zadoks 69 glyphosate treatment was lower in 2013 but comparable in 2014.
Purple nutsedge is difficult to control in vegetable plasticulture due to its ability to penetrate the plastic mulch. Experiments were conducted in Spring 2011 and 2012 at the Plant Science Research and Education Center in Citra, Florida, and in Spring and Fall 2013 at the Gulf Coast Research and Education Center in Balm, Florida. The objective was to determine tomato (cv. Amelia, Charger, and Florida 47) tolerance and purple nutsedge response to herbicides and herbicide tank-mixes applied POST-directed to base of tomato. Chlorimuron-ethyl, flazasulfuron, fomesafen, halosulfuron, imazosulfuron, rimsulfuron, nicosulfuron, and trifloxysulfuron applied POST-directed to the base of the crop did not cause crop damage. Halosulfuron or tank-mixes that contained halosulfuron tended to provide the greatest nutsedge suppression in all experiments. Halosulfuron or nicosulfuron rimsulfuron applications when tomato (cv. Charger) were flowering reduced marketable yields by 22-28% compared to the nontreated control. No yield reductions occurred with Florida 47 or Amelia cultivars. Flazasulfuron provided similar purple nutsedge suppression to halosulfuron and did not damage tomato. Tank-mixes that contained halosulfuron tended not to provide any added benefit over halosulfuron alone. This research identified herbicides that are safe for use as a POST-directed application in tomato. Additional research is needed to evaluate efficacy of these herbicides on broadleaf weeds.
The commercial release of crops with engineered resistance to 2,4-D and dicamba will alter the spatial and temporal use of these herbicides. This, in turn, has elicited concerns about off-target injury to sensitive crops. In 2014 and 2015, studies were conducted in Tifton, GA, to describe how herbicide (2,4-D and dicamba), herbicide rate (1/75 and 1/250 field use), and application timing (20, 40, and 60 DAP) influence watermelon injury, vine development, yield, and the accumulation of herbicide residues in marketable fruit. In general, greater visual injury and reductions in vine growth, relative to the non-treated check, were observed when herbicide applications were made before watermelon plants had begun to flower. Although the main effects of herbicide and rate were less influential than the timing of applications with respect to plant development, the 1/75 rates were more injurious than the 1/250 rates; dicamba was more injurious than 2,4-D. In 2014, the 1/75 and 1/250 rates of each herbicide reduced marketable fruit numbers 13 to 20%, but only for the 20 DAP application. The 1/75 rate of each herbicide when applied at either 20 or 40 DAP reduced the number of fruit harvested per plot in 2015. Dicamba residues were detected in marketable fruit when the 1/75 rate in 2014 and 2015 and the 1/250 rate in 2015 was applied to plants at 40 or 60 DAP. Residues of 2,4-D were detected in 2015 when the 1/75 and 1/250 rates were applied at 60 DAP. Across both years, the maximum level of residue detected was 0.030 ppm. While early season injury may reduce watermelon yields, herbicide residue detection is more likely in marketable fruit when an off-target contact incident occurs closer to harvest.
Cowpea is a major specialty crop in the southern US. In recent years, no new herbicide programs have been evaluated for cowpea despite additional herbicide registrations. Studies were conducted from 2014 to 2016 at Fayetteville and Kibler, Arkansas to assess new herbicide programs for cowpea production. The herbicide programs included: three commercial standard programs; fomesafen (PPL, 0.21 kg ha-1)-, flumioxazin (PPL, 0.21kgha-1)-, and halosulfuron (PPL, 0.054 kg ha-1)-based programs with or without S-metolachlor (1.12 kg ha-1) fb imazethapyr (0.07 kg ha-1); and two sets of sulfentrazone (PPL/PRE)-based programs applied alone (0.21 kg ha-1) or as a pre-mixture with carfentrazone (0.11kgha-1 0.01kgha-1) with or without S-metolachlor (1.12 kg ha-1). The sulfentrazone-based programs included POST applications of imazethapyr fb sethoxydim (0.32 kg ha-1) or fluthiacet-methyl (0.0067 kg ha-1) and sethoxydim as necessary. In 2014 and 2015, crop stand loss was minimal and crop injury was generally low (<20%). Weed control from sulfentrazone- and flumioxazin-based programs was excellent (>90%). In 2016, with heavy rainfall around planting time, sulfentrazonecontaining programs reduced cowpea yield 45% to 60%. Flumioxazin-based programs caused >85% injury at Kibler early-season, which lasted until harvest. Heavy rainfall also reduced efficacy of residual herbicides. In general, the sulfentrazone- and flumioxazin-based treatments consistently yielded similar to the weed-free controls. The majority of the programs had <60% weed control in Fayetteville early in the season. POST herbicides improved weed control to >90% in most treatments. Palmer amaranth and annual grass control was generally better in Kibler, with >80% control at harvest. Sulfentrazone is registered for cowpea and is effective on Palmer amaranth, but growers need to be careful about where and when to use it. Flumioxazin should be considered for registration in cowpea once its use pattern and location-specific recommendations are well defined.
Common cottonwood-based agroforestry system is widely adopted in Indian Indo-Gangetic plains. The stem cuttings of common cottonwood are raised in a nursery 10 to 12 months in rows spaced 0.5mx 0.5 m, before re-planting in the field. The longer duration of 10 to 12 months and wider spacing of stem cuttings in the nursery makes the entire transplants highly vulnerable to weed competition, especially during early establishment stages. The efficacy of preemergence herbicides and plastic and straw mulches for weed management in common cottonwood nursery was investigated at two sites in years 2014 and 2015. The major weed flora in the experimental field consisted of three grass weeds (crowfootgrass, feather lovegrass, and southern crabgrass), and four broadleaf weeds (scarlet pimpernel, garden spurge, niruri, and lesser swinecress). The integrated use of pendimethalin or alachlor applied PRE with paddy straw mulch significantly reduced density and biomass of both grass and broadleaf weeds compared to herbicide or straw mulch used alone, and provided similar level of weed control to hand weeding at both locations. Spreading of plastic mulch in the whole field after punching holes for common cottonwood stem cuttings, or in row spaces recorded similar weed control to hand-weeding. The integrated use of herbicides with straw mulch, and or plastic mulch alone significantly improved plant height, stem diameter, below- and aboveground biomass of common cottonwood plants compared to unweeded check. The study concluded that integrated use of herbicides plus paddy straw mulch or plastic mulch alone could be adopted for weed management in common cottonwood nursery plantations.
PRE and POST herbicide options were evaluated to control perilla mint, a potentially deadly plant for livestock. The germination requirements of seed from weedy populations were also investigated to better understand and predict emergence timing. POST applications of aminocyclopyrachlor blends, glyphosate, picloram 2,4-D, aminopyralid 2,4-D, and 2,4-D alone provided superior control of perilla mint when applied in the early reproductive growth stage. Picloram 2,4-D and aminocyclopyrachlor chlorsulfuron also provided soil residual activity and the most effective PRE control followed by pendimethalin and aminopyralid 2,4-D. Seed from weedy populations tend to germinate in a range of night/day soil temperatures from 10–15 C to 25–30 C. Therefore, application and activation of the most effective PRE treatments should be made before these temperatures occur in areas where weedy perilla mint populations are found.
A field study was conducted in 2015 and 2016 at the H. Rouse Caffey Rice Research Station (RRS) to evaluate antagonistic, synergistic, or neutral interactions of quizalofop when mixed with ALS-inhibiting herbicides labeled in rice production. Quizalofop was applied at 120 g ai ha-1. Mixture herbicides included penoxsulam at 40 g ai ha-1, penoxsulam triclopyr at 352 g ai ha-1, halosulfuron at 53 g ai ha-1, bispyribac at 34 g ai ha-1, orthosulfamuron halosulfuron at 94 g ai ha-1, orthosulfamuron quinclorac at 491 g ai ha-1, imazosulfuron at 211 g ai ha-1, and bensulfuron at 43 g ai ha-1. All ALS herbicides mixed with quizalofop indicated antagonistic responses for red rice, CL-111, CLXL 745, or barnyardgrass control at either 14 or 28 days after treatment (DAT). At 28 DAT, quizalofop mixed with penoxsulam or bispyribac controlled barnyardgrass 34 to 38%, compared with an expected control of 97%. In addition, these same mixtures controlled red rice, CL-111, and CLXL-745 61 to 67% at 28 DAT compared with an expected control of 96 to 97%. A second application of quizalofop at 120 g ha-1 was applied at 28 DAT. At 42 DAT, neutral responses were indicated for all mixtures except with quizalofop mixed with penoxsulam containing products.
Nomenclature: bensulfuron; bispyribac; halosulfuron; imazosulfuron; orthosulfamuron; penoxsulam; quizalofop-p-ethyl; barnyardgrass, Echinochloa crus-galli (L.) P. Beauv.; rice, Oryza sativa L.
With the widespread occurrence of herbicide-resistant weeds in midsouthern U.S. rice, new technologies are needed to achieve adequate weed control. A new non—genetically modified rice trait has been commercialized that is resistant to quizalofop, an acetyl coenzyme A carboxylase (ACCase)-inhibiting herbicide. The addition of quizalofop-resistant rice to production systems will increase the use of quizalofop, possibly increasing the risk for injury to other grass crops. Experiments were conducted in 2014 and 2015 to determine the sensitivity of corn, grain sorghum, and conventional rice to low rates of quizalofop (1/10× to 1/200× of 160 g ai ha-1). Conventional rice was not affected by quizalofop rate or application timing. Corn displayed the greatest response to the 1/10× quizalofop rate at the two- to three-leaf stage, with 50% to 65% injury and 35% to 37% relative yield compared to the nontreated check. Grain sorghum was injured 31% to 34% by the 1/10× quizalofop rate applied at the twoto three-leaf stage, and there was 20% to 26% injury at the panicle exertion growth stage. The highest rate of quizalofop at the panicle exertion stage reduced yields 28% to 46%. Overall, risk for injury to any of the three evaluated crops from quizalofop appears low, with greatest injury observed at the highest quizalofop drift rate, with minimal injury at lower rates.
Dicamba-resistant crops are being rapidly embraced by growers in the United States to manage glyphosate-resistant and other difficult-to-control broadleaf weeds. However, dicamba resistance in kochia, one of the troublesome weeds of the North American Great Plains, is already widespread. Hence, POST application of dicamba may not adequately control kochia. In recent years in the High Plains Region of Colorado, Kansas, and Nebraska, dicamba has been widely applied, often in combination with atrazine or metribuzin, in early spring for PRE control of kochia. However, there is concern this use pattern may increase the selection for dicamba-resistant (DR) kochia. Hence, there is need to understand the efficacy of dicamba applied PRE versus POST for managing DR kochia. A greenhouse study was conducted to test the efficacy of PRE-applied dicamba compared with POST application using both DR and dicamba-susceptible (DS) kochia. Efficacies of PRE-applied dicamba were compared at seeding densities of 300, 600, 900 and 1200 viable seed m-2. At eight weeks after PRE and four weeks after POST treatment, control of DR kochia seeded at 300 viable seed m-2 was improved from 10% with 560 g ae ha-1 dicamba applied POST to 94 and 97% with 350 and 420 g ha-1 dicamba applied PRE, respectively. However, the efficacy of PRE-applied dicamba was negatively correlated with seed density. When kochia seeding density was increased from 300 to 1200 seed m-2, the ED50 of PRE-applied dicamba increased from 237 to 705 g ae ha-1 for DR kochia, and from 129 to 361 g ae ha-1 for DS kochia, respectively. Thus, PRE-applied dicamba was effective in controlling the population of DR kochia tested, suggesting that PRE-applied dicamba may still provide substantial control of some DR kochia populations. However, it is not advisable to apply dicamba alone for PRE kochia control.
A study was conducted at three locations in Louisiana to evaluate the response of common Louisiana rice weed species to different rates of application of benzobicyclon herbicide. Benzobicyclon was applied at 31, 62, 123, 185, 246, 493, 739, 986, and 1,232 g ai ha-1 into flooded field conditions when ducksalad was at the first elongated-leaf stage. Barnyardgrass, false pimpernel, and yellow nutsedge control never exceeded 50% from any rate of benzobicyclon applied, averaged across evaluation timing. Ducksalad control, averaged across evaluation timing, was 83% when treated with 493 g ha-1 and did not increase when treated with higher rates of benzobicyclon. At 42 d after treatment (DAT), purple ammannia and Indian toothcup treated with 185 and 246 g ha-1 of benzobicyclon were controlled 58% and 81%, respectively, and did not differ in control compared with higher rates of benzobicyclon. All weeds were hand-harvested from each plot and separated by species at the conclusion of the study. No differences in fresh-weight biomass were observed for barnyardgrass, false pimpernel, purple ammannia, or yellow nutsedge. Treatment with benzobicyclon at ≥62 g ha-1 resulted in reduced ducksalad fresh weight 42 DAT compared with the nontreated sample. Indian toothcup fresh weight was reduced 77% to 96% compared with the nontreated sample when treated with benzobicyclon at 246 to 1,232 g ha-1.
Florpyrauxifen-benzyl is a new herbicide being developed for rice. Research is needed to understand its spectrum of control and optimal tank-mix partners. Multiple greenhouse and field experiments were conducted to evaluate florpyrauxifen-benzyl efficacy and tank-mix compatibility. In greenhouse experiments, florpyrauxifen-benzyl at 30 g ai ha-1 provided ≥75% control of all weed species evaluated (broadleaf signalgrass, barnyardgrass, Amazon sprangletop, large crabgrass, northern jointvetch, hemp sesbania, pitted morningglory, Palmer amaranth, yellow nutsedge, rice flatsedge, smallflower umbrellasedge), and control was similar to or better than other herbicide options currently available in rice. Barnyardgrass was controlled 97% with florpyrauxifen-benzyl at 30 g ha-1, ultimately reducing height (86%) and aboveground biomass (84%). In these field studies at 30 g ha-1, no antagonism was observed when florpyrauxifen-benzyl was tank-mixed with contact (acifluorfen, bentazon, carfentrazone, propanil, and saflufenacil) or systemic (2,4-D, bispyribac, cyhalofop, fenoxaprop, halosulfuron, imazethapyr, penoxsulam, quinclorac, and triclopyr) rice herbicides. Although not every tank-mix or weed species was evaluated, the lack of antagonistic interactions herein highlights the flexibility and versatility of this new herbicide. Once florpyrauxifen-benzyl becomes commercially available, it will be beneficial to tank-mix this new herbicide with others without sacrificing efficacy, so as to apply multiple sites of action together and thus lessen the risk for evolution of herbicide resistance.
Palmer amaranth, a dioecious summer annual weed species, is the most troublesome weed in agronomic crop production systems in the United States. Palmer amaranth resistant to photosystem (PS) II- and 4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibitors is of particular concern in south central Nebraska. The objectives of this study were to determine the effect of PRE followed by POST herbicide programs on PS II- and HPPD-inhibitorresistant Palmer amaranth control, crop yield, and net economic return in conventional corn. A field study was conducted in 2014, 2015, and 2016 in a grower's field infested with PS II- and HPPD-inhibitor-resistant Palmer amaranth near Shickley in Fillmore County, Nebraska. A contrast analysis suggested that mesotrione S-metolachlor atrazine applied PRE provided 83% Palmer amaranth control at 21 d after application compared to 78 and 72% control with pyroxasulfone fluthiacet-ethyl atrazine and saflufenacil dimethenamid-P, respectively. Most of the PRE followed by POST herbicide programs provided ≥85% Palmer amaranth control. Based on contrast analysis, POST application of dicamba diflufenzopyr provided 93% Palmer amaranth control compared to 87, 79, and 42% control with dicamba, dicamba halosulfuron, and acetochlor, respectively, at 28 d after POST. All PRE followed by POST herbicide programs, aside from mesotrione S-metolachlor atrazine followed by acetochlor (2,530 to 7,809 kg ha-1), provided 9,550 to 10,500 kg ha-1 corn yield compared with 2,713 to 6,110 kg ha-1 from nontreated control. Similarly, PRE followed by POST herbicide programs, except for mesotrione S-metolachlor atrazine followed by acetochlor ($191 and $897 ha-1), provided similar net return of $427 to $707 ha-1 and $1,127 to $1,727 ha-1 in 2014 and 2015-16, respectively. It is concluded that herbicide programs based on multiple sites of action are available for control of PS II- and HPPD-inhibitor-resistant Palmer amaranth in conventional corn.
Cogongrass is commonly found in disturbed areas in Florida, where it is increasingly becoming a problem in bahiagrass pastures. Soil pH has been suggested as a possible mechanism for this invasion; to evaluate this, replacement series competition studies were conducted under greenhouse conditions at two soil pH levels: pH 4.5, or pH 6.8. Cogongrass ramets and bahiagrass seedlings were planted at proportions of 0:40, 1:20, 2:10, 4:1, and 8:0, respectively. Aboveground biomass was measured after 8 weeks and used to calculate relative yield, relative crowding coefficients, and aggressivity values. At soil pH 4.5, the relative competitiveness of cogongrass and bahiagrass was similar, with both species contributing equally to relative yield. At soil pH 6.8, bahiagrass seedlings showed greater competitive ability than cogongrass ramets. Relative crowding coefficient and aggressivity values supported this, with bahiagrass showing increased competitiveness under higher soil pH. This indicates that decreases in soil pH, often associated with poor soil fertility, is likely a contributing factor for cogongrass invasion into bahiagrass pastures. Soil amendments to raise pH may provide a cultural management tool for cogongrass infestations in pastures.
Nomenclature: Cogongrass, Imperata cylindrica (L.) P. Beauv.; bahiagrass, Paspalum notatum Fluegg. var. saurae Parodi PASNS.
Nader Soltani, J. Anita Dille, Robert H. Gulden, Christy L. Sprague, Richard K. Zollinger, Don W. Morishita, Nevin C. Lawrence, Gustavo M. Sbatella, Andrew R. Kniss, Prashant Jha, Peter H. Sikkema
Earlier reports have summarized crop yield losses throughout various North American regions if weeds were left uncontrolled. Offered here is a report from the current WSSA Weed Loss Committee on potential yield losses due to weeds based on data collected from various regions of the United States and Canada. Dry bean yield loss estimates were made by comparing dry bean yield in the weedy control with plots that had >95% weed control from research studies conducted in dry bean growing regions of the United States and Canada over a 10-year period (2007 to 2016). Results from these field studies showed that dry bean growers in Idaho, Michigan, Montana, Nebraska, North Dakota, South Dakota, Wyoming, Ontario, and Manitoba would potentially lose an average of 50%, 31%, 36%, 59%, 94%, 31%, 71%, 56%, and 71% of their dry bean yield, respectively. This equates to a monetary loss of US $36, 40, 6, 56, 421, 2, 18, 44, and 44 million, respectively, if the best agronomic practices are used without any weed management tactics. Based on 2016 census data, at an average yield loss of 71.4% for North America due to uncontrolled weeds, dry bean production in the United States and Canada would be reduced by 941,000,000 and 184,000,000 kg, valued at approximately US $622 and US $100 million, respectively. This study documents the dramatic yield and monetary losses in dry beans due to weed interference and the importance of continued funding for weed management research to minimize dry bean yield losses.
Strawberry is an important horticultural crop in Florida. The long growing season and escapes from fumigation and PRE herbicides necessitate POST weed management to maximize harvest potential and efficiency. Alternatives to hand-weeding are desirable, but clopyralid is the only broadleaf herbicide registered for use. Weed control may be improved by early-season clopyralid applications, but at risk of high temperature and increased strawberry injury. The effect of temperature on clopyralid safety on strawberry is unknown. We undertook a growth chamber experiment using a completely randomized design to determine crop safety under various temperature conditions across acclimation, herbicide application, and post-application periods. There was no effect of clopyralid on the number of strawberry leaves across all temperatures. Damage to the strawberry manifested as leaf malformations. Acclimation temperatures affected clopyralid-associated injury (p=0.0309), with increased leaf malformations at higher temperatures (27 C) compared to lower (18 C) temperatures. Pre-treatment temperatures did not affect clopyralid injury. Post-application temperature also affected clopyralid injury (p=0.0161), with increased leaf malformations at higher temperatures compared to lower ones. Clopyralid application did not reduce flowering or biomass production in the growth chamber. If leaf malformations are to be avoided, consideration to growing conditions prior to application is advisable, especially if applying clopyralid early in the season.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere