Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Since the dawn of agriculture, people and wild animals have been in conflict because agricultural crops generally offer a rich food source for wild animals as well as for people. Large, wild herbivores compete for pasture resources with livestock and can act as reservoirs of livestock diseases. Furthermore, livestock form a concentrated and vulnerable food source for predators. As a result, humans have extirpated many native animal species from agricultural areas, either directly, or indirectly through modifications in habitat availability or structure resulting from land use changes. As human populations have expanded in developing countries they have caused loss in biodiversity and species extinctions, and will continue to do so. I review attempts to change the interaction between people and large herbivores from one that is primarily negative to one that is positive by increasing the benefits which individuals, communities and society derive from wild, large herbivores. My proposition is that, in developing countries, it is only by using this approach that wild, large herbivores have a chance of surviving outside areas specifically set aside for their protection. In the developed world the opposite trend will occur as people move into the cities causing human populations to decline in rural regions. As a consequence, wildlife habitat will increase and wild, large herbivores will come into conflict with humans, particularly in peri-urban areas rather than in rural areas as happens at present. This will lead to a change in public attitude from one that supports wildlife conservation to one that sees wild, large herbivores as a threat; again, with potential negative consequences for wildlife conservation.
We present a bioeconomic model for moose Alces alces management in Norway, where two sub-populations of moose are subject to different site-specific mortality rates caused by the spatial distribution of territorial wolf Canis lupus packs, and are coupled by the seasonal migration of moose. The costs and benefits of moose are asymmetrically distributed in space, since they congregate in the wolf territory during winter where most browsing damage occurs. Using a class-structured matrix population model as the basis for bioeconomic analysis, we investigated how the optimal moose management differed between a unified (i.e. maximising overall profit) and a non-unified (i.e. profit maximised at the level of individual landowners) management scheme. Within the unified management scheme, the combined marginal costs and benefits decide the optimal off-take rate, and the relative hunting value and damage costs decide the relative allocation of the harvest between the two sub-populations. In the non-unified management scheme, harvesting takes place up to the point where the private marginal hunting value equals the private marginal browsing cost, while the relative hunting value and damage costs do not influence the optimal management. As the browsing damage that occurs inside the wolf territory is not taken into account in the costs of the area outside the territory within the non-unified solution, optimal moose population size will be higher for the outer area than under the unified solution. This results in an overall economic loss, which increases with increasing migration rates. Whenever the boundaries of political or management units do not follow those of ecological processes, ignoring the spatial resolution of the ecological process will result in sub-optimal management of a renewable resource.
Sustainable harvest, the extraction of game without affecting population viability, is a desirable approach to the use of wildlife. However, overharvest has been responsible for the decline of many wildlife populations globally, so there is an urgent need to balance human requirements while avoiding the severe depletion of wild populations. Northern common eiders Somateria mollissima borealis are heavily hunted in Canada and Greenland, but the effect of this intensive harvest has not been examined. We developed a population model to investigate the sustainability of the reported harvest, which consisted of two wintering areas in Greenland and Atlantic Canada and three breeding populations. The model indicated that harvest in Atlantic Canada was sustainable, but a number of conditions could lead to slow declines. In contrast, the annual winter harvest of 55,000–70,000 eiders reported during 1993–2000 in Greenland was not sustainable, and this conclusion held under a wide range of alternate conditions. The model indicated that harvest during late winter may have a greater effect on populations than harvest in early winter. We further refined the model to assume that at some low population level the success of hunters would decline and that harvest became a function of population size (a rate). This scenario had the expected and undesirable result of stabilizing populations at very low levels. Overall, our model suggests that the high harvest reported in Greenland during 1993–2000 endangers the sustainable use of the northern common eider population and that management actions are required. Common eider harvest levels in Greenland should be reduced by at least 40% of the 1993–2000 levels to stop projected declines, and allow for recovery of the decimated Greenland breeding population. Encouragingly, new hunting regulations were introduced in Greenland in 2002–2004, and harvest levels appear to be decreasing. If these harvest reductions continue, our population model could be used to re-evaluate the status of populations in the two countries.
We studied the foraging behaviour of Eurasian griffons Gyps fulvus on the island of Crete during 1997–2005 by direct observations in four colonies and by monitoring the movements of seven radio-equipped individuals. The estimated foraging range of griffon colonies, based on direct observations, ranged from 206–851 km2 by using the Minimum Convex Polygon method, and 195–527 km2 by using the Adaptive Kernel method, with corresponding means of 472 and 380 km2, respectively. Meanwhile, radio-tracking showed that foraging vultures covered an area ranging from 390–1300 km2. The mean foraging radius was calculated at ca 15 km and the mean maximum one at 29.9 km. On windless days, griffons' mean cross-country speed was 5.1 m/second (maximum = 13.3 m/second), with a mean climbing rate of 0.6 m/second and a mean inter-thermal gliding speed of 18.8 m/second. Any livestock carrion located up to 9 km from a colony was exploited by its members with minimum competition from individuals of adjacent areas. In total, we recorded 23 feeding incidences which took place at a mean distance of 8.4 km from the colonies. The food types identified were sheep carcasses located near stock-farms and offal disposed in waste dumps in the vicinity of the colonies. On average, the griffons allocated 7.6 hour/day to food searching. This varied significantly between months and seasons. The shortest foraging time was recorded in December (6.4 hour/day) and the longest in June (9.3 hour/day). A significant difference of one hour after sunrise was detected in the departure time from the colony between seasons revealing that griffons departed earlier during winter trying to maintain their foraging budget within the available daytime limits.
Population dynamics of willow ptarmigan Lagopus l. lagopus are dominated by varying numbers of successful recruits to the population. One important component that determines this number is the survival of chicks from hatching to fledging at about two weeks of age. We studied the causes of death of chicks and the effects of intensive, local predator control on chick production in two areas of south-central Norway from 1997–2004. During 1997–2000, 253 chicks were captured and radio-tagged in a 2,000 ha area in Dalsbygda, Norway. Average survival for all years from hatching to two weeks of age was 33%. Predation accounted potentially for up to 73% of all deaths. Research-related deaths accounted for 17% of deaths, while 10% died of other natural causes than predation. In no case did disease or lack of food appear to be the ultimate cause of death. The localisation of broods could not be predicted from brood position the previous day and there was no correlation between brood behaviour and chick death.
Intensive local predator control was conducted in a 2,000 ha area in Numedal, Norway during 1998–2004. Red fox Vulpes vulpes, marten Martes martes, mink Mustela erminea, raven Corvus c. corax and hooded crow Corvus c. cornix were trapped or shot. Chick production was calculated based on pigmentation of wing feathers from all birds harvested in September. Mean chick production for all years was 3.1 chicks per two adults in the treatment area and 2.4 in an adjacent area without predator control, but the differences were not significant. In our study, therefore, predator control had no measurable effect on chick production or survival.
Offspring survival after leaving the nest is a critical element of population viability and in the management of game species. We estimated brood survival to 35 days and examined the factors thought to influence individual chick survival during the first two weeks post-hatching in a population of sharp-tailed grouse Tympanuchus phasianellus near Fort St. John, British Columbia, Canada, during 2004–2005. Using program MARK and an informationtheoretic approach, we assessed the importance of female attributes, date of hatching, distance moved from the nest and weather conditions experienced prior to hatching and during brood-rearing for survival of offspring. During 2004–2005, 67% of broods had at least one chick that survived to 35 days of age, but within these broods only 34% of the chicks survived. Later hatching dates were positively related to survival during the 0–14 day age interval, whereas the distance moved from the nest by a brood and inclement weather conditions during the first seven days post-hatching significantly reduced the survival rate of chicks to 14 days of age. Further, inclement weather prior to hatching was positively related to the survival of offspring to 14 days, perhaps because wet weather created favourable foraging environments and habitat characteristics during brood rearing. Cohesive management of nesting and brood-rearing habitats is required to reduce offspring mortality associated with increased travel between suitable habitats, and may minimize mortality during periods when weather is unfavourable.
The aim of our work is to predict potentially optimal areas for red-legged partridge Alectoris rufa hunting success in Andalusia (southern Spain) according to topographic, climatic and vegetation factors and their interaction. We analysed 32,134 annual hunting reports from the period 1993–2001 reported by 6,049 game estates to estimate the average hunting yields of red-legged partridge in each Andalusian municipality (N= 771). We modelled the favourability for obtaining good hunting yields using generalised linear models (GLM) on a set of climatic, topographic, land use and vegetation variables. The variables that affected hunting yields of red-legged partridge were dry herbaceous and wood crops, annual number of frost days, altitude and mean annual temperature. Vegetation was the most important factor of those considered in our study explaining the distribution of good hunting yields of the red-legged partridge in Andalusia. The favourability equation was used to create a downscaled image representing the favourability of obtaining good hunting yields for the red-legged partridge in 1 × 1-km squares in Andalusia, using the Idrisi Image Calculator. Downscaling the model from municipalities to 1 × 1-km squares provided a much higher spatial resolution when predicting the optimal areas for good hunting yields for the red-legged partridge.
We compared vital rates of two different ring-necked pheasant Phasianus colchicus stocks (pen-reared and wild) and assessed effects of predator control on these pheasants released into current range. Wild (31 males and 112 females) and pen-reared (230 males and 1,059 females) ring-necked pheasants were released in spring into two areas in southern Idaho during 2000–2001 to augment low resident populations. Wild female survival (value ± 95% CI) from 1 March-1 October was significantly greater than that of pen-reared females in both 2000 (0.40 ± 0.14, N = 62 vs 0.04 ± 0.07, N = 49) and 2001 (0.43 ± 0.16, N = 40 vs 0.08 ± 0.10, N = 40). Of 134 documented deaths of radio-marked female pheasants, 54% were due to unknown predation, 26% to mammalian predators, 12% to avian predators, 4% to natural causes, and 4% were human caused. Wild females had a 0.23 ± 0.09 (N=88) nesting rate and pen-reared females 0.28 ± 0.18 (N = 25). During 2001, predators were removed within our study areas. Survival of wild male pheasants increased after predator removal (0.20 ± 0.35, N = 6 vs 0.70 ± 0.28, N = 10), but survival did not increase for either stock of female pheasants after predator removal. Predator control did not increase the number of hens surviving to reach the nesting season (1 May), nesting rate or nest success. Wild female pheasants were seven times more likely to survive translocation to 1 October, 10 times more likely to survive to the nesting season, eight times more productive, and one-third as expensive per egg hatched than pen-reared females. Low survival, poor productivity and higher costs of spring-released pen-reared female pheasants strongly suggest that this is an inappropriate management tool for increasing pheasant numbers.
Lesser prairie-chickens Tympanuchus pallidicinctus have declined throughout their range because of loss or fragmentation of habitat from conversion of native prairie to agricultural cropland, exacerbated by overgrazing and drought. We used data from radio-marked lesser prairie-chickens to determine whether differences in survival existed between populations occurring in two areas dominated by different vegetation types (sand sagebrush Artemisia filifolia vs shinnery oak Quercus havardii) in the Texas Panhandle from 2001 through 2005. We used a model-selection approach to evaluate potential generalities in lesser prairie-chicken survival. Our results indicated that survival of lesser prairie-chickens differed between breeding and non-breeding periods, and between study populations. We estimated annual survival of lesser prairie-chickens at 0.52 (95% CI: 0.32–0.71) in the sand sagebrush and 0.31 (95% CI: 0.12–0.58) in the shinnery oak vegetation type. Our results suggest that demographic differences in lesser prairie-chicken within sand sagebrush and shinnery oak vegetation types throughout the Texas Panhandle should be evaluated, especially during the breeding season. Based on our results, higher mortality of birds during the breeding season illustrates the need to manage for vegetation components such as sand sagebrush and residual bunchgrasses as opposed to shinnery oak such that potential breeding season mortality may be lessened.
Optimal foraging theory predicts that predators choose the most energetically profitable prey. At the northern limit of its distribution the puma Puma concolor tends to prey on large mammals, whereas at the southern limit its prey comprises medium-sized and small mammals. We analysed the puma's food habits in Central Mexico, and concluded that the nine-banded armadillo Dasypus novemcinctus is the main prey, followed by the white-nosed coati Nasua narica and white-tailed deer Odocoileus virginianus. The puma's standardised niche breadth (B') was 0.21 and was in accordance with the expected in the exponential model. We compared this with niche breadths recorded in other studies carried out in the Americas. After a forest fire, puma changed their feeding habits and began to hunt prey > 6.1 kg more frequently. Food preferences of puma in Central Mexico resemble those recorded for puma in South America rather than the preferences recorded for puma in other North American populations.
Track plates are an inexpensive, non-intrusive and widely used wildlife monitoring tool. Almost all track-plate media are not suited for use during rainy conditions, because rain or heavy dews can distort tracks or render the medium ineffective for registering further animal visitations. Furthermore, available track-plate media may also produce tracks of varying quality and hard-surfaced media produce inaccurate two-dimensional imprints. We experimented with the utility of using Biofoam™, a phenolic foam used in orthotics, as a track-plate medium. Domestic animals were utilized to produce track imprints on track plates constructed of casting foam, coarse sand, fine sand, very fine sand and sooted aluminum. Resulting tracks were photographed and images were used in a questionnaire which was completed by expert wildlife trackers who rated the quality of the tracks. Tracks in the casting foam are three-dimensional, register claws, clearly depict all pads, accurately record shape and size, and convey very fine anatomical details. Track imprints on the casting foam were rated consistently better by experts than track imprints left on the other media. Field trials demonstrated that the casting foam and tracks in the casting foam can endure lengthy periods of inclement weather conditions in the field without being damaged or distorted. In summary, where three-dimensional, high-quality prints need to be recorded in variable field conditions, we recommend the use and further experimentation with track plates made of casting foam.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere