Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Abundance estimates are important to management of most harvested species of wildlife. In West Greenland, recent estimates of barren-ground caribou Rangifer tarandus groenlandicus population size have been derived from aerial surveys conducted in early March of numerous short (7.5 km) transects that focused on obtaining high detection probabilities. The resultant study area coverage was low (≤ 1.6%), in part due to the survey design. In this article, we conducted a critical review of the current West Greenland caribou survey methodology using data from past surveys and recent GPS collar data, and present recommendations to improve the methodology. On an annual basis, movement rates of collared females were lowest in March, supporting survey timing. March distribution of collared caribou, however, differed markedly between 2009 and 2010, indicating that stratification flights prior to each survey are required to produce the most accurate and precise estimates. A viewshed analysis in GIS supported the use of a 300-m strip width, but demonstrated that the current 15-m survey flight altitude resulted in 4-5% availability bias due to the portion of the strip width hidden by topography and out of sight of observers, and a corresponding nil detection probability for caribou in these areas. A 30-m or 45-m flight height may be more appropriate to reduce the availability bias in this rugged terrain. Examination of the population composition data collected during and after abundance estimates suggested that robust calf:cow and bull:cow ratio data could be obtained with less sampling effort distributed proportionate to the population density. We suggest that systematic strip transects should be considered to increase survey coverage; this design would increase survey efficiency (ratio of helicopter time to coverage) and inherently increase precision. Distance sampling collected by group would be an improvement over the current negatively biased, transect-total method to calculate detection probabilities. Managers should ensure that sufficient resources are available to obtain robust estimates of abundance and composition of West Greenland caribou. These recommendations may be applicable to other areas in which ungulate populations exist in heterogeneous habitats with low sightability.
We estimated variations in breeding parameters and daily survival rates (DSR) of nests of the great egret Ardea alba during 2008-2009 in the Hara Biosphere Reserve, the Persian Gulf. We modelled and compared nesting success using an information-theoretic approach to assess effects of nest site and temporal covariates on DSR. The mean DSR was 0.9896 (95% CI: 0.9931-0.9842) and the overall nest survival was 0.49 (0.35-0.63). Distance to black rat Rattus rattus nest sites was the most important covariate (∑ωi = 0.96) affecting the survival of great egret nests whereas distance to other great egret and western reef heron Egretta gularis nests was less influential. Neither nest diameter nor nest age effectively explained variation in nesting success. We concluded that black rat predation is the most important factor affecting the breeding performance of great egrets in the Hara Biosphere Reserve, and control measures should be undertaken to reduce the negative effects of this invasive rodent on the heron colonies of mangrove forests in the Persian Gulf.
During a nine-year study manipulating predator abundances, post-breeding numbers of red grouse Lagopus lagopus scotica increased initially in response to experimentally reduced levels of key predator species (i.e. red fox Vulpes vulpes, carrion crow Corvus corone, stoat Mustela erminea and least weasel M. nivalis), but subsequently declined whilst predator control continued. Raptors, which were not controlled, were also present and may have influenced grouse demography. Our study examines the relative importance of controlled predators and raptors on grouse breeding success and survival. Raptor abundance did not differ between periods of predator control and periods of no predator control. However, during the breeding season, the survival of adult grouse was negatively correlated with the abundance of both raptors and controlled predators. Within the group of controlled predators, the strongest effects on red grouse adult survival were attributed to small mustelid abundance. Grouse breeding success was negatively correlated with the abundance of controlled predators, particularly carrion crows; however, no significant effect of raptor abundance was detected.
Global positioning system (GPS) collars are prone to locational error and missed fixes caused by vegetation and topography, meaning that locational error may be greater, or fix success lower, in certain habitats. These forms of error can lead to bias associated with data loss or censoring. The goals of this paper were to: 1) estimate resource selection functions using logistic regression to map probability of acquisition (Pacq) of a GPS location and subsequent censoring of locational error in relation to landscape features and 2) develop a spatially-explicit map of weighting factors across the landscape to avoid over- or underestimating resource selection. Female mule deer Odocoileus hemionus were used as a case example and to validate maps. Locational error and Pacq were influenced by vegetation and topography, thus necessitating a means to weight the data. Applying logistic regression to quantify Pacq allowed an easy and straightforward approach to mapping Pacq and subsequently, weighting factors (weight = 1/Pacq). Weighting landscape characteristics improved validation of deer-occurrence maps compared to using the original, unweighted landscape values. Using the best validating deer-occurrence map, we found that 87.5-90.2% of locations (N = 1,043) from an independent sample of deer (N = 4) occurred within the highest probability of use bin (∼ 20% of the landscape); 95.4-96.9% of independent locations occurred within the two highest probability of use bins (∼ 40% of the landscape). By accounting for, and modeling, missed GPS fixes and locational error, we improved the predictive ability of maps based on an independent sample of deer. Without correction (i.e. weighting) factors, the importance of habitat types and terrain features may be over- or underestimated, which could have serious consequences when interpreting resource selection by animals and developing management recommendations.
One of the principal goals of wildlife research and management is to understand and predict relationships between habitat quality, health of individuals and their ability to survive. Infrequent sampling, non-random loss of individuals due to mortality and variation in capture susceptibility create potential biases with conventional analysis methods. To account for such sampling biases, we used a multi-state analytical approach to assess relationships between habitat, health and survival of grizzly bears Ursus arctos horribilis over a 10-year period along the east slopes of the Canadian Rockies in Alberta, Canada. We defined bear health states by body condition estimated from the relationship between weight and body length. We used a sequential model building process to first account for potential sampling biases, and then explored changes in body condition relative to habitat use and survival. Bears that used regenerating forest habitats (mostly due to forest harvesting) containing a diversity of age classes were more likely to see gains in their body condition, whereas bears that used older forests were more likely to see reductions in body condition. Survival rate was reduced most by road densities which in turn were positively correlated with regenerating forest habitat. Human activities which promote young regenerating forests, such as forest harvesting, therefore promotes improved health (increased body condition) in bears, but are offset by reductions in survival rates. Multi-state analyses represents a robust analytical tool when dealing with complex relationships and sampling biases that arise from dynamic environments.
The source-sink model of population dynamics predicts that density drives emigration of subordinate animals to habitats offering lower competition for resources. Several authors have suggested use of this model as a potential framework for conservation of exploited carnivores when precise enumeration is unfeasible. Dispersal is a critical behavioural mechanism for management based on this model, yet there is a lack of knowledge on the habitat and social conditions that motivate carnivore emigration and settlement. The cougar Puma concolor is a widely distributed and heavily exploited carnivore, indigenous to the western hemisphere. We evaluated patterns in cougar dispersal behaviour from two sites in Utah, differing in terms of management and the level of natural and anthropogenic habitat fragmentation. We used our results to evaluate three predictions with respect to cougar dispersal behaviour: 1) natal population density and maternal reproductive status prompt emigration, 2) movement of dispersing cougars is shaped by habitat configuration and permeability, and 3) dispersers preferentially settle in areas of high habitat quality and low conspecific density. We documented the emigration of 62 individuals and measured movement variables, including sex and site-specific frequency, distance, seasonality, direction and the habitat quality and harvest rates characterizing areas where immigrants settled. Although males and females exhibited pronounced differences in dispersal frequency, we found few differences in distance traveled, season of departure and direction moved. Dispersal occurred most frequently during spring, coinciding with the estrus pulse. Natural and anthropogenic obstacles modified landscape permeability, and therefore dispersal distances were shorter in fragmented habitats than in contiguous ones. Relative to males, females dispersed into habitats of lower productivity with higher mean annual harvest rates. Patterns in male settlement suggested habitat selection based on mating opportunities, whereas female settlement was predicated on avoiding conspecifics. Cougars in this Great Basin ecosystem largely conformed to source-sink predictions. Results can be used to parameterize source-sink models based on animal behaviour and landscape permeability to conserve exploited carnivores, under conditions of population expansion or recolonization of habitats where Allee effects are a limiting factor.
Our objective was to examine effects of groups of mixed numbers and ages of male North American elk Cervus elaphus on the reproductive performance of females. We conducted research at the Starkey Experimental Forest and Range in northeastern Oregon, USA, during 1993-2000. Each spring in late March, we released 40 female elk, eight yearling (9-month old) male elk and 2-8 branch-antlered elk (i.e. ≥ 2 years of age during rut the following autumn) into a 622-ha fenced pasture. Elk were gathered during autumn and early winter, and were brought to winter feeding grounds where blood samples were drawn to determine pregnancy status. The following spring, females were released into an 80-ha pasture prior to parturition. We searched for and captured newborn calves and obtained ear-punch samples for genetic analysis. We used 18 microsatellite loci to establish paternity of each calf. We varied the ratio of mature males (i.e. ≥ 3 years old) to female ratio from 0.03 to 0.21. As expected, mature males (older and heavier) were more successful in siring calves than were younger males. Within age classes, however, body mass in spring did not accurately predict mating success in autumn. Reproductive rates were not affected by season of grazing by cattle, yearling male to female ratio or mature male to female ratio. Sire age had no effect on mean dates of calf births or on calf weights. Neither sire age nor season of grazing by cattle had significant effects on calf weights; however, mean date of birth was significantly earlier when cattle grazing occurred during the previous autumn than when cattle grazed during the preceding spring. Furthermore, the number of calves sired by yearling males was greater when cattle grazing occurred during autumn, than when grazing occurred during spring. In the years with disruptive cattle grazing during rut, females mated not only with yearling males, in general, but often with those who were lighter in body mass during the previous spring than others in the same cohort. The extent to which those yearling males are untested in combat with older, dominant herd bulls may have genetic consequences leading to differences in fitness and subsequent reductions in calf survival.
Please note that the supplementary information, including Appendix SI () mentioned in this article, is available in the online version of this article, which can be viewed at www.wildlifebiology.com
Cheetahs Acinonyx jubatus are important predators of herbivores in African ecosystems, and several methods to determine their diet have been used in the past. We applied a novel method to quickly assess the diet of cheetahs with respect to grazing and browsing herbivores, i.e. we analysed the stable carbon isotope ratio (δ13CV-PDB) of cheetah breath to separate individuals feeding predominantly on browsers or grazers, respectively. Browsers and grazers are contrasting in their muscle δ13CV-PDB, because of their isotopically distinct C3 or C4 plant diet, respectively. Muscle δ13CV-PDB of six abundant local potential prey species of cheetahs confirmed that kudu Tragelaphus strepsiceros and springbok Antidorcas marsupialis browsed on C3 plants, whereas gemsbok Oryx gazella, hartebeest Alcelaphus buselaphus, warthog Phacochoerus africanus and cattle Bos taurus predominantly grazed on C4 plants. Breath δ13CV-PDB of the cheetahs followed the bimodal frequency distribution of the prey species with six cheetahs being assigned to the C4 food web and three to the C3 food web. Breath tests may be a suitable method to delineate the trophic membership of carnivores to C3 and C4 food webs when animals are chemically immobilised for other purposes.
Knowing animals' gut retention time (GRT) for important food items is critical when using non-invasive studies based on faecal remains, e.g. when analysing nutritive quality of food, or relating diet or behaviour to movements. We analysed GRT in six captive brown bears Ursus arctos, after feeding on either berries (a mixture of bilberry Vaccinium myrtillus and lingonberry V. vitis-idaea) or animal carcasses (either reindeer Rangifer tarandus, European rabbit Oryctolagus cuniculus, domestic pig Sus scrofa domestica, cattle Bos taurus or horse Equus ferus caballus). Median GRT50% (i.e. when 50% of all faeces containing experimental food had been defecated) was 5 hours and 47 minutes (1st and 3rd quartiles = 4 hours and 36 minutes and 7 hours and 3 minutes; N = 20) after feeding on berries and 14 hours and 30 minutes (1st and 3rd quartiles = 10 hours and 9 minutes and 16 hours and 57 minutes; N = 20) after feeding on carcasses. Median GRTmin (i.e. first defecation comprised of experimental food) was 3 hours and 5 minutes (1st and 3rd quartiles = 1 hour and 51 minutes and 4 hours and 12 minutes; N = 21) for berries and 8 hours and 2 minutes (1st and 3rd quartiles = 6 hours and 14 minutes and 10 hours and 44 minutes; N = 20) for carcasses. Median GRTmax (i.e. last defecation comprised of experimental food) was 15 hours and 27 minutes (1st and 3rd quartiles = 11 hours and 36 minutes and 17 hours and 16 minutes; N = 21) for berries and 16 hours and 16 minutes (1st and 3rd quartiles = 12 hours and 11 minutes and 17 hours and 27 minutes; N = 20) for carcasses. A carcass diet had 6 hours and 26 minutes ± 1 hour and 56 minutes (SE) longer GRT50% than a berry diet (N = 39), despite low variation in food intake. Activity level, feeding time (midday/midnight), sex, age (subadult/adult), ingested amounts of food, prior food remains processed by the gut (i.e. cumulative faeces weight) and defecation rate did not influence the GRT50%. Our reported GRT estimates are reliable values to be used within research and management to relate diet based on faecal remains to habitat use for common and important food items used by Scandinavian brown bears.
Asiatic wild asses Equus hemionus are difficult to catch as most populations are subject to poaching and are thus very shy. Wild asses run fast and groups tend to split up when disturbed or chased. Free-range darting normally only allows the capture of single individuals, and the recommended anaesthetic protocol requires the use of the potent opiate ethorphine, which is highly toxic for humans and subject to special purchase and import regulations. In the following, we describe a corral capture method developed in Altyn Emel National Park in southeastern Kazakhstan. Round-ups of Asiatic wild asses were done at night by use of cars and strong lights to reduce the speed of fleeing asses by impeding their ability to see the terrain. The method provides an additional tool for capturing free-ranging wild asses, and contrary to previously described methods, it does allow the simultaneous capture of groups of animals without the need for chemical immobilisation.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere