Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
The number of staging geese in northwestern Europe has increased dramatically. Growing goose numbers put strong grazing pressure on agricultural pastures. Damage to agricultural land may be mitigated by managing nature reserves in order to optimally accommodate large numbers of grazing geese. Livestock grazing has been shown to facilitate foraging geese; we take the novel approach of determining the effects of four different livestock grazing treatments in a replicated experiment on the distribution of geese. We present experimental field evidence that livestock grazing of a salt marsh in summer affects the habitat preference of foraging geese during autumn and spring staging. In an experimental field set-up with four different livestock grazing treatments we assessed goose visitation through dropping counts, in both autumn and spring. Grazing treatments included 0.5 or 1 horse ha-1 and 0.5 or 1 cattle ha-1 during the summer season. The livestock grazing regime affected goose distribution in autumn, just after livestock had been removed from the salt marsh. In autumn, goose visitation was highest in the 1 head ha-1 grazing treatments, where grazing intensity by livestock was also highest. In line with this result, goose visitation was lowest in the 0.5 head ha-1 livestock grazing treatments, where the grazing intensity by livestock was lowest. The differences in goose visitation among the experimental treatments in autumn could not be explained by the canopy height. In spring we did not find any effect of livestock grazing treatment on goose visitation. Differences in the distribution of geese over the experiment between autumn and spring may be explained by changes in the availability of nutrient-rich vegetation. Livestock summer grazing with a high stocking density, especially with horses, can be used to attract geese to salt marshes in autumn and potentially reduces damage caused by geese to inland farmland. From a nature conservation interest point of view, however, variation in structure of the vegetation is a prerequisite for other groups of organisms. Hence, we recommend grazing of salt marshes with densities of 0.5 head ha-1 of livestock when goose conservation is not the only management issue.
The Chinese grouse Tetrastes sewerzowi is restricted to small mountain areas on the southeastern edge of Qinghai—Tibet plateau. Recent evidence indicates that the global climate has undergone rapid change. To assess the potential effects of climate change on Chinese grouse, we applied a maximum-entropy modeling (MaxEnt) method to predict the current and future distributions of this species for three time periods: 2020, 2050 and 2080 in two greenhouse-gas emissions scenarios (A2a and B2a), which assume a medium and a lower increase in CO2 emissions, respectively. Our modeling revealed that: 1) the size of suitable areas for grouse will decline over time, especially in emissions scenario A2a; 2) range shifts will happen at both latitudinal (northward shift) and elevational direction (upward). In addition, habitat expansion will be limited relative to loss, especially in the more distant future. Although the size of suitable area will not change greatly in the near future (e.g. 2020 and 2050), as predicted in the emissions scenario A2a in 2020, habitat will become more fragmented. Therefore, we suggest that the habitat fragmentation be considered with range shifts calculation while assessing the climate change threats. To cope with the ongoing climate change, either the protected area of the existing reserves should be expanded or new reserves should be established to accommodate range shifts. Reforestation and gouse population monitoring should also be conducted in the reserves to track response of grouse to climate change.
Multiple land uses including tourism, hunting, and agriculture around protected areas can be a serious complication for wildlife management. We calculated habitat selection indices (Manly's alpha) for 10 bovid species in the Pendjari Biosphere Reserve in Benin, west Africa, to assess if habitat use differed in each bovid species between hunting and non-hunting zones. Presence/absence data was used in resource-selection functions based on a generalized linear mixed effect model to examine factors that explained bovid species distribution. We observed stronger avoidance of open habitat types in the hunting zone than in the non hunting zone for the hartebeest Alcelaphus buselaphus, oribi Ourebia ourebi, roan Hippotragus equines, kob Kobus kob, Waterbuck Kobus ellipsiprymnus defassa and reedbuck Redunca redunca. In contrast, in grey duiker Sylvicapra grimmia, red-flanked duiker Cephalophus rufilatus, bushbuck Tragelaphus scriptus and buffalo Syncerus caffer we found no differences in habitat use between hunted and non-hunted areas. This may indicate that the latter species show more pronounced ecological and behavioural plasticity. Further, resource selection of bovid species on a small scale was influenced by other factors such as habitat structure, landscape characteristics, and human disturbance. This preliminary assessment of bovid habitat relationships in west Africa suggests that human hunting activities may cause species to alter their habitat selection. We therefore suggest habitat models may need to incorporate this source of variation if they are to accurately predict habitat use or distribution of a species.
Ecological and behavioral plasticity allow marmosets, genus Callithrix, to adapt and succeed in urban areas. This research assess proximity and relationships between Wied's marmoset Callithrix kuhlii, domestic animals and residents of Ilhéus, Bahia, Brazil. We collected data on the species' urban ecology and biology, since it has been little studied so far. Tools for data gathering included semi-structured interviews, direct observations and GPS-mapping. There were sightings within the three major districts of Ilhéus, with 37% of positive questionnaires (n = 359) for marmoset sighting at least weekly. Therefore, marmosets were considered common in this city. Most records and frequent sightings were associated with secondary forest fragments, backyards with fruit trees and mangroves. Marmosets travel among urban fragments using electrical and phone wires and crossing roads. There is a relatively small number of accidents when compared to the number of sightings, with electrocution as the most common. Visitation of marmosets to households, attracted by food provisioning, was considered frequent. People feel pity for the marmosets and lure them to their houses through food, but offered items are not always suitable. Marmoset exploration of uncommon habitats, such as mangroves, might be driven by a lack of larger forest fragments within the city.
Characterizing landscapes as gradients may help illuminate animal—habitat relationships that are either 1) masked by or 2) impractical to investigate using a purely patch-based perspective. Among other methods, variogram models may reveal these gradients in the environment by quantifying spatial dependence among point samples, yet few analyses of animal habitat relationships employing variograms have been undertaken. Using vegetation volume measurements from 4-m2 plots within breeding vesper sparrow Pooecetes gramineus territories, we calculated four territory-scale gradients: 1) mean volume, 2) standard deviation of volume, 3) nugget (a measure of fine-scale variation), and 4) range (an index of patch size). The first two gradients are more commonly employed in animal ecology while the second two were derived using variogram models and are infrequently employed. We next used these gradients in generalized linear models predicting territory occupancy and daily nest survival. We found overwhelming support for employing the range parameter and models indicated 1) birds selected areas with lower average vegetation volume and smaller patch sizes and 2) had lower rates of nest predation in areas with larger patch sizes. While these results indicate a pattern of non-ideal habitat selection, there was no indication that territories which experienced nest predation were selected disproportionately. Our results underscore the utility of 1) variograms among other methods for quantifying gradients in animal habitat and 2) variogram model parameters in investigating the habitat ecology of animals.
Wilson's snipe Gallinago delicata is one of the least studied North American game birds, and information on snipe populations and abundance is mostly unknown. We conducted roadside surveys stratified at the township level in the lower Mississippi Alluvial Valley (LMAV) in Arkansas, Mississippi and Louisiana, as well as the Red River Region, and the Gulf Coastal Plain of Louisiana during winters of 2009 and 2010. We identified observer, vegetation cover, and water cover as important covariates in estimating snipe densities. We detected 2915 snipe along 814 line transects (1450 km) for 2009 and 2010 combined. We estimated snipe densities of 8.05 individuals km-2 (95% CI: 4.57–14.17) in 2009, and 2.13 individuals km-2 (95% CI: 1.47–3.08) in 2010. We used the resulting snipe density estimates within the study area to calculate abundance estimates of 1 026 431 (95%CI: 582 707-1 806 774) in 2009, and 271 590 (95%CI: 187 435-392 722) in 2010 for the LMAV. Our data indicate that a road transect survey method is effective for estimating wintering snipe density and abundance in the lower Mississippi Flyway.
Atlantic Flyway resident population (AFRP) Canada geese Branta canadensis in New Jersey, USA, have grown dramatically during the last thirty years and are considered as overabundant in many areas. Development of corporate parks and urban areas with manicured lawns and artificial ponds offer ideal nesting habitat for AFRP geese, with limited pressure from hunting or natural predators. As a result, spatial heterogeneity in reproduction must be taken into account in managing the population. We identified the site and landscape spatial scale extents at which land use features influenced nest site selection and nest success. Nest searches were conducted throughout the State during 2009—2010, and 309 nests were monitored through hatch to determine their fates. We ran a spatial correlation analysis of land use composition to identify spatial scale extents at which geese most considerably respond to their environment for nest site selection and nest success. All significant spatial scale extents were at or below 2.25 km for the five classified land use types. We emphasize that habitat-goose associations in densely urban areas were strongest at extents < 1 km, while rural and natural areas were strongest at extents > 1 km. Geese responded to human-dominated land uses at a smaller spatial scale extent than land uses with low human density. The strength of all nest-land use univariate relationships was low; however, our primary objective was to identify the scales extent at which geese associate with land use, rather than the intensity. We encourage managers to consider these scale-dependent associations in identifying important habitat variables in multivariate models; and if population control of AFRP Canada geese is of primary interest, then focusing on local habitat management will most likely have the largest influence in managing this population.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere