Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
We studied neutral (microsatellite) and adaptive (MHC) genetic diversity of two Ukrainian populations of black grouse Tetrao tetrix to fill a gap in the data on the diversity of European populations of this species. We found that Ukrainian populations are more diverse than recently fragmented central European ones and also highly differentiated from these populations. Both studied populations in Ukraine, the northern and the Carpathian, did not show any signs of recent bottleneck events. The population structure among Ukrainian black grouse was more pronounced for neutral variation than for adaptive MHC diversity, suggesting that a common selective force has led to balancing selection shaping the MHC diversity. The MHC differentiation among the two studied regions was still high (Dest = 0.454), which could be a sign of local adaptation as a response to shifting balance in space. Thus, we suggest that the northern and the Carpathian black grouse populations should be treated as separate Management Units (MU). The black grouse population in the Carpathian Mountains appeared to be more diverse than the one in the north in terms of neutral genetic variation, whereas in terms of adaptive variation the two populations vary in diversity depending on the method of scoring diversity. Therefore, we suggest that the Carpathian Mountains could have been a refuge for the black grouse during the last glaciation.
Harvest records are often assumed to offer an indirect measure of population abundance in huntable species. However, this requires population density changes are reflected in comparable linear changes in harvest rates. We tested this assumption for common snipe Gallinago gallinago, common wood pigeon Columba palumbus, coot Fulica atra, grey partridge Perdix perdix, roe deer Capreolus capreolus and brown hare Lepus europaeus in Denmark. If we consider hunting a form of predator—prey interaction, the annual kill can be viewed as a predator functional response to prey population size. Convergence of the annual kill to a type I functional response with similar auto-correlative structures in the harvest and count data would support the hypothesis that fluctuations in harvest and population abundance occurred with similar periodicity. The annual kill of common snipe showed the best fit to a type I functional response to the point count indices, with similar auto-correlative structures in the two variables. Other species showed different functional responses, the result of hunter behaviour, such as voluntary hunting restraint on species of concern and saturation effects from rapidly expanding abundant species. Relationships between the annual kill and population abundance were complex and incorporation of hunting legislation changes improved optimal model fits between harvest statistics and count data. Consideration of the validity of the underlying assumptions is necessary before harvest records are used as an index for population size. It is essential that detectability/accessibility of a species does not change systematically over time. Such bias may derive from habitat shifts, difference in timing of counts and hunting harvest, changes in migration patterns and annual reproduction and mortality. We recommend the continued collation of hunting harvest statistics, supported by sociological studies, to provide insight into the mechanisms that affect the hunting effort, to understand relationships between harvest statistics and population abundance.
Managing exploited species characterized by declining abundance, such as northern bobwhite Colinus virginianus and scaled quail Callipepla squamata, presents challenges for regulatory agencies and wildlife managers. Our objective was to determine the influence of quail abundance and quail hunter effort on annual bobwhite and scaled quail harvest in Texas, USA. We formulated competing models accounting for quail harvest at both statewide and regional scales using hunter survey and quail abundance data collected by the Texas Parks and Wildlife Department (1978–2012) and evaluated them using multiple linear regression and model selection (AICc). Statewide bobwhite and scaled quail harvest was best predicted by models that included quail abundance, quail hunter-days or total quail hunters, respectively (R2 = 0.969 and 0.915, respectively). Our most plausible models also predicted regional quail harvest reasonably well (R2 ≥ 0.67), but in some regions diverged from statewide models, with hunter effort alone best explaining quail harvest. Despite our models' high predictive ability, current hunting regulations do not reflect variability in factors driving harvest at the spatial scales we evaluated. Species characterized by limited dispersal ability, such as quails, are at risk of localized overharvest when hunting management cannot limit harvest at the same spatial scale where hunting occurs. For Texas quails, harvest management implemented by individual property managers, rather than statewide hunting regulations, is the most appropriate way to avoid localized overharvest because property managers can control harvest at the scale relevant to both quails and quail hunters.
Live trapping in combination with translocation of wild animals is an important tool in wildlife management, but drivers of human trapping activity are poorly understood. Here we test three hypotheses that have been proposed to describe and explain temporal variation in group hunting-trapping effort. Namely, we test the precipitation effect, effort compensation and Monday effect hypotheses on live trapping effort of brown hares for restocking. Analysis of 26 047 hares trapped in 460 trapping days during the period 1966–1995 in western Poland showed that seasonal onset of trapping was later during rainy autumns supporting avoidance of rainy weather by the trapping group. The hunting group increased the number of animals caught the day following a day with low off-take providing evidence for the ability to respond quickly and compensate for short term variation in the trapping effort. Group trapping effort as reflected by number of hares caught was lower on Monday than on any other working day. This is in line with observations on weekly variation in working effort of employees across various contexts. We conclude that even seemingly standardized and rigid trapping schemes may be responsive to factors such as weather, experienced effort and subtle seasonal effects.
On Anticosti Island (Quebec, Canada), overbrowsing by white-tailed deer Odocoileus virginianus has substantially modified plant communities and reduced the recruitment of balsam fir Abies balsamea seedlings over most of the territory. An exception to this phenomenon has been observed in localised patches occurring on a single geological deposit named Chicotte, where the natural recruitment of balsam fir is occurring even in the presence of a large white-tailed deer population. We hypothesized that edaphic properties within the Chicotte deposit could result in lower forage quality, which in turn could reduce browsing pressure and allow fir regeneration to occur (i.e. bottom—up effects). To test this hypothesis, we measured soil properties and foliage chemistry of four forage species (balsam fir, white spruce Picea glauca, Canada mayflower Maianthemum canadense and Canada bunchberry Cornus canadensis) collected on each of three geological deposits on Anticosti Island: Chicotte, Becscie and Jupiter (the latter two considered as controls). Contrary to expectation, results from principal component analysis suggested that Chicotte was the most fertile, whereas Becsie was the least fertile, of the three deposits. Furthermore, balsam fir foliage chemistry did not respond to geological deposit. Conversely, Mantel et Procrustes tests revealed a significant correlation between soil properties and forage quality for white spruce, consistent with the carbon—nutrient balance hypothesis. Univariate tests confirmed that neutral detergent fiber concentrations in white spruce were higher on the Becscie than on the Chicotte deposit. Likewise, in vitro true digestibility of both white spruce and Canada bunchberry foliage were lower on the Becscie than on the Chicotte deposit. Although we failed to demonstrate why balsam fir recruitment occurs on the Chicotte deposit, our data demonstrate that edaphic properties may affect the quality of some forage types, which potentially affect foraging patterns in overbrowsed boreal landscapes.
Bat activity surveys (walked surveys combining transect and point counts) are extremely important for collecting data throughout Europe in conservation and planning contexts. To ensure optimal data, it is vital to ensure synchronicity between survey time and peak bat activity. However, although protocols for two-hour dusk activity surveys are well accepted, recommended start time in relation to sunset is a ‘best guess’ rather than based on empirical evidence. Accepted practice differs widely with recommended start times varying from 30 min pre-sunset (finishing 90 min post-sunset) to 30 min post-sunset (finishing 2.5 h after sunset). We provide the first empirical test of optimal start times for dusk activity surveys by comparing bat activity at the same sites on the same nights. Four sites were surveyed, viz. two high-quality woodland sites and two low-quality agricultural sites. At each site, surveyors walked the same route and stopped at the same pre-defined listening points for three repeat surveys per night: 1) starting 30 min pre-sunset; 2) starting at sunset; and 3) starting 30 min post-sunset. In total, 240 hours' of data were collected. Four species, all widespread and common throughout Europe, were recorded: common pipistrelle Pipistrellus pipistrellus, soprano pipistrelle P. pygmaeus, Natterer's Myotis natterai and noctule Nyctalus noctule. Recorded bat activity was highest on sunset and post-sunset surveys both generally (overall bat activity) and for all specific species encountered. Findings were generally consistent for both low- and high-quality habitats. The same species were generally represented in both point and transect data but point data yielded higher estimates of overall activity in low-quality habitat and higher bat species richness in both high- and low-quality habitat relative to transect data. We recommend that: 1) two-hour dusk bat activity surveys start at/after sunset not before sunset and 2) both transect and point data are collected and analysed.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere