Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
The lowland paca Cuniculus paca is a large rodent and is one of the most hunted mammal species in the Neotropics. Conservation strategies for the lowland paca that depend on data from live captures have been hampered due to the elusive behavior of the species. Here, we introduce a scientifically standardized version of a traditional method used by hunters in the Amazon to capture pacas and compare its cost-effectiveness with conventional scientific methods. First, we used each of these methods at 11 sites in the Brazilian Amazon. The hunting technique captured 12 pacas, whereas the conventional methods captured none, and the hunting technique proved to be as inexpensive as the least-costly conventional method. Second, we analyzed the cost-effectiveness of the methods by comparing the results obtained in the field with data from previous paca studies. The hunting method was four-fold more efficient than the study with the highest paca capture rates achieved to date. This study shows that the use of a hunting technique to capture paca is an efficient and safe procedure that may be applied at different sites in the Amazon and represents an example of how traditional knowledge can be used in partnership with science to enhance the development of successful conservation efforts.
Gliding squirrels occur globally and many are of conservation concern due to habitat fragmentation and degradation. Information on their ability to cover the distance between two trees by gliding is lacking in many species which might be vital for habitat management and conservation. The aim of the study was to present the field observations on gliding behaviour of the red giant gliding squirrel Petaurista petaurista observed within tropical rain-forest of Namdapha National Park, Arunachal Pradesh, Indian eastern Himalaya. The data were collected on 71 glides observed at nights. The mean height of launching and landing trees were 28.5 ± 1.0 m and 16.4 ± 0.9 m, respectively. Gliding variables calculated were vertical drop (mean = 13.4 ± 1.0 m), horizontal distance (mean = 36.3 ± 2.7 m), air speed (mean = 8.9 ± 0.2 m s-1), ground speed (mean = 7.9 ± 0.2 m s-1), glide ratio (mean = 3.1 ± 0.2), glide angle (mean = 19.0 ± 0.9°), GBH of launching tree (mean = 156.8 ± 8.5 cm) and GBH of landing tree (mean = 195.2 ± 9.5 cm). Gliding distance was categorized in four types. The highest glides in a 26–50 m glide-class (44% (n = 31)) were the most frequently observed. Gliding squirrels preferred top canopy (56%, n = 40) for distant glides. Forest structure has an influence on the gliding habits of gliding squirrels and thus our data on gliding parameters should be used when planning forest management actions.
Traditionally, spoor (tracks, pug marks) have been used as a cost effective tool to assess the presence and in some cases the individual identity of larger mammals. Automated camera traps are now increasingly utilised to monitor wildlife, primarily as the cost has greatly declined and statistical approaches to data analysis have improved. While camera traps have become ubiquitous, we have little understanding of their effectiveness when compared to traditional approaches using spoor in the field. Here, we 1) test the success of camera traps in recording a range of carnivore species against spoor in realistic field settings (dirt roads in a South African wilderness reserve); 2) ask if simple measures of spoor size taken by amateur volunteers are likely to allow individual leopards to be tracked in the field and 3) for a trained tracker, ask if this approach may allow individual leopards to be followed with confidence in savannah habitat. We found that camera traps under-recorded mammalian top and meso-carnivores when compared with spoor in the field, with camera traps more likely to underrecord the presence of smaller carnivores (civet 64%; genet 46%, Meller's mongoose 45%) than larger (jackal sp. 30%, brown hyena 22%), while leopard was more likely to be recorded by camera trap (all recorded by camera trap only). We found that amateur trackers could be beneficial in regards to recording leopard presence; however the large variance in measurements of spoor taken by volunteers suggests that this approach is unlikely to allow the collection of further information about individual leopards. Nevertheless, the use of simple spoor measurements in the field by a trained field researcher increases their ability to reliably follow a leopard trail in difficult terrain. This allows researchers to glean further data on leopard behaviour and habitat use without the need for complex spoor analysis.
Vaginal implant transmitters (VITs) are commonly used to determine the time of birth for ungulates to enable the capture and marking of their offspring. However, the use of VITs requires frequent monitoring and hence, high manpower and/or aviation costs. Similarly, offspring equipped with traditional telemetry transmitters necessitate large efforts for effective monitoring. The alternative described here uses communication between the VIT or offspring's transmitter and the parent's collar to monitor the status of the VIT or offspring's transmitter (Vectronic Aerospace, Berlin, Germany). The parent's collar uses its satellite communication capabilities to forward this information to the investigator when appropriate. I describe the development and successful deployment of this system in a study of black-tailed deer Odocoileus hemionus columbianus.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere