Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Detailed knowledge on movement behaviour of free-ranging muskoxen Ovibos moschatus is currently lacking. Quantifying variation in individual movement and the variables driving such patterns is important to understand how they meet their basic requirements and to inform management. Because muskoxen exist in nutrient-poor systems with extreme climatic and seasonal variability, individual movement patterns are expected to be largely dependent on environmental conditions and the seasonal variation therein. We analysed high-resolution location data of 14 adult female muskoxen roaming around Zackenberg in northeast Greenland (74°28′N, 20°34′W). We assessed the relative importance (Akaike variable weights) of multiple extrinsic conditions in explaining variation in hourly speed, turning angles, and activity. We found that time of day, ambient temperature, and land cover types were the most important covariates explaining variation in fine-scale movement and activity patterns throughout the year. Movement speeds were consistently lower in land cover types with more dense vegetation. Speed of movement was positively correlated with ambient temperature when the days were long, while negatively related with temperature in periods with few or no hours of daylight. Diurnal peaks in movement and activity patterns were observed most of the year (including mid-winter months with 24-h darkness), except during high-summer (24-h of daylight), when individual movement and activity remained continuously high. The topographic variation (elevation and slope) explained only a small part of the variation in muskox movement patterns in the areas where the muskoxen were observed. Analyses of displacement patterns revealed a mixture of movement behaviours. We conclude that muskoxen in high-arctic Greenland adopt a largely nomadic movement behaviour, but do so within a rather small geographical area (app. 5000 km2), and that their movement and activity patterns are largely directed at finding suitable foraging patches and avoiding cold-stress during harsh winter weather.
Monitoring changes in animal abundance is a central issue in conservation biology. Population indices may be a valuable support to wildlife managers in coarse-scale survey programs, as they normally represent more intuitive and less expensive monitoring tools if compared with absolute estimates. Reliable indices of relative abundance, however, require validation against some known standards. We used mark-resight estimates to investigate the performance of indices derived from spring spotlight surveys to track changes in a mountain-dwelling population of red deer Cervus elaphus within the Stelvio National Park, central Italian Alps. Every spring between 2008 and 2015 we conducted four sessions of roadside-counts using spotlights, recording all sightings of marked and unmarked individuals; the zero-truncated Poisson log-normal estimator was applied in a robust-design fashion to return absolute estimates of spring abundance. We then compared the mark-resight estimates with two indices of abundance, the maximum number (MNC) and the average number (ANC) of deer counted every spring in the four sampling occasions, using linear models on log-transformed data. Both the MNC and the ANC proved reliable indices of relative abundance, as their relationships with mark-resight estimates were positive and highly significant, and the beta coefficients of linear models were not significantly different from 1. The same analysis conducted on subsets of secondary sampling occasions suggested that at least 3 repeated counts every spring are necessary to consistently track changes in deer population size. The reliability of spotlight-based indices to monitoring deer population changes has been widely debated, possibly owing to inconsistent performances of the method in different landscapes. For mountain-dwelling deer populations living in similar habitats, our results suggest that spring spotlight surveys represent valuable tools in support of wildlife managers for long-term, large-scale monitoring programs; furthermore, they can provide appropriate indices to estimating population growth rates and thus modelling deer population dynamics.
Information on the nesting success of birds in the Indian subcontinent is almost negligible. In the present study factors affecting nesting success were studied over four years (i.e. 2011–2014) in a color ringed population of the oriental magpie robin (OMR) in an urban habitat of Haridwar district (29°55′N, 78°08′E), Uttarakhand, India. Objectives of our study were 1) to assess whether nest box affects nesting success in the OMR or not 2) to compare breeding data obtained from nest boxes with tree cavities.
Out of total 114 nests built in both nest boxes and tree cavities, 80 nests were successful in producing at least one fledgling resulting 69.25% nesting success. Nesting success did not differ significantly between nest boxes and tree cavities or during different years. No correlation was found between territory size and nesting success (correlation coefficient = 0.41). Observations indicated that predation accounted for the maximum egg loss and nestling mortality. Predation rate was higher in tree cavities but did not differ significantly during different years and between nest boxes and tree cavities. In all years but 2011 clutch size was significantly higher in nest boxes than in tree cavities. However, incubation period, provisioning period, number of eggs hatched and number of young fledged did not differ significantly between nest boxes and tree cavities. When provided, nest boxes were occupied more frequently at all study sites indicating that nest box may act as an alternative nesting site for the OMR and perhaps for other secondary cavity nesters facing scarcity of nesting sites due to rapid urbanization.
Wildlife is exposed to increasing anthropogenic disturbances related to shale oil and gas extraction in response to rising worldwide demands. As these disturbances increase in intensity and occurrence across the landscape, understanding their impacts is essential for management. On Anticosti Island (Québec, Canada), we equipped six white-tailed deer Odocoileus virginianus with GPS collars taking hourly locations. We then designed a playback experiment by simulating constant drilling noise emitted by generators to which half of the collared deer were exposed for a three-week period. Deer tolerated noise levels up to 70 dB(C). However, the number of locations recorded in areas where the noise was above 70 dB(C) was on average 73% (SE ± 18%) lower than before the disturbance, which suggests that deer experienced fine scale functional habitat loss. This loss of habitat occurred up to 200 m from the noise source. The size of home ranges and movement rates did not appear to be affected by the noise disturbance. In addition, during the experiment, deer were able to relocate in areas of their home range where food availability was similar to that of sites used before the disturbance. These results show that drilling noise can affect the habitat use of white-tailed deer. However, future research is needed to better understand the cumulative impacts of shale mining on large mammals, as this study isolated only one of the many disturbances present near mining sites and for a limited period.
Beyond organisms experiencing direct impacts (mortality) from the presence of anthropogenic features, interactive relationships may exacerbate the effects of anthropogenic disturbance within the context of these features. For example, mortality risk may be affected by the road infrastructure associated with energy development by influencing space use of predators including human hunters. To assess these relationships, we conducted research on northern bobwhite Colinus virginianus across a hunted and non-hunted area of Beaver River Wildlife Management Area, Oklahoma, using radiotelemetry from 2012–2015. We found that bobwhite mortality risk decreased as the distance from primary roads (m) increased across weeks (hazard ratio [HR] = 1.008, 95% confidence interval [CI] = 1.0003 to 1.0013). The interaction between unit (hunted and non-hunted) and distance from primary roads was not significant (HR = 1.00, 95% CI = 0.999 to 1.001) indicating that hunting pressure was not a likely explanation for the observed decrease in survival related to primary roads. Bobwhite on the hunted unit avoided exposed soil/sparse vegetation ( = -0.01, CI = -0.02 to -0.002) and bare ground ( =-0.01, CI =-0.02 to -0.002) more than bobwhite on the non-hunted unit, however these were weak relationships. No other differences in bobwhite space use were detected related to hunting. Though we were limited to estimating theoretical rather than empirical amounts of hunting pressure during our study, we were unable to detect any negative compounding effects of anthropogenic development and hunting pressure on bobwhite ecology during the hunting season.
Tree hollows constitute crucial habitats for fauna and can buffer ambient environmental conditions. The latter property should be especially relevant during extreme weather conditions, which are forecast to increase under anthropogenic climate change. We investigated the buffering capacity of Eucalyptus oleosa F.Muell. ex Miq. subsp. oleosa tree hollows in semi-arid southern Australia for 28 days under a wide range of ambient temperatures. Tree hollows provided more stable microclimates than ambient conditions, maintaining lower temperatures and higher humidity during the day and higher temperatures and lower humidity during the night. Daytime buffering capacity increased slightly with depth and we recorded a maximum buffering of 15.1°C below ambient temperatures. Maximum day time buffering capacity increased at a rate of approximately 0.6°C per 1°C increase in ambient temperature, meaning that maximum buffering capacity was reached during the hottest periods. The high buffering capacity of tree hollows suggests that old trees with deep hollows are important in facilitating the persistence of fauna during extreme weather events. Therefore, protecting old-growth forests and vegetation remnants that are rich in tree hollows is an important strategy for mitigating the impact of climate change on fauna.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere