Knowledge of Arctic snow and ice surface albedo is essential to understand local energy budget and snow/ice albedo feedback under global warming scenario. In situ measured albedo plays an essential role by providing ground truth reference for remote sensing monitoring of albedo at large scale. Such measurements with portable and fixed-location spectroradiometers were conducted in one 12-day (long-term) and several short-term (3–4 hours) ice stations over the Pacific Arctic sector during the summer 2010 Chinese National Arctic Research Expedition (CHINARE). Results show that the wavelength-integrated albedo across 350 to 2200 nm of bare ice was ∼0.56 to 0.68 in the lower latitudes and marginal ice zone, while albedo of snow-covered ice reduced from 0.75–0.86 to 0.42–0.61 during the mid-August period of the 12-day ice station (86°48′N to 87°20′N). The albedo variation and evolution of melt ponds were examined with details during the 12-day ice station. It is found that albedo of melt pond reduced from 0.68 (melt pond snow, 9 August) and 0.66 (melt pond ice, 9 August) to 0.32 (melt pond water and ice, 17 August) in one week as a rainfall event occurred. Such rapid decreasing of snow and sea ice albedo and evident difference between the pack ice zone and marginal ice zone may contribute to the surface albedo feedback and rapidly shrinking summer sea ice extent in the Arctic Ocean.
How to translate text using browser tools
1 November 2015
Summer Surface Albedo of Sea Ice in Pacific Arctic Sector as Measured during the CHINARE 2010 cruise
Wentao Xia,
Hongjie Xie,
Changqing Ke,
Jinping Zhao,
Ruibo Lei,
Stephen F. Ackley