Victor Klemas
Journal of Coastal Research 30 (5), 869-880, (1 September 2014) https://doi.org/10.2112/JCOASTRES-D-14-00013.1
KEYWORDS: Vegetative buffers, stream buffers, buffer mapping, buffer change detection, hyperspectral mapping, runoff filtering, buffer modeling, buffer design, buffer restoration
Klemas, V., 2014. Remote sensing of riparian and wetland buffers: an overview.
Forested riparian and wetland buffers can help protect stream water quality, provide wildlife habitat, preserve floodplains and wetlands, protect against erosion, and provide recreational value. Many waterways have no buffers or buffers that have been degraded by human activities, including agriculture and urban development. To plan, evaluate, and restore riparian buffers, wetland managers need to monitor the conditions of constantly changing buffers over time. Remote sensing offers a cost-effective monitoring approach. Because riparian and wetland buffer zones exhibit extreme variations in width, length, spatial complexity, soil, and vegetation cover, mapping their hydrology and land cover requires high-spatial- and high-spectral-resolution data. The recent availability of high-spatial-resolution satellite and high-spectral-resolution aircraft imagery has significantly improved the capacity for mapping riparian buffers, wetlands, and other ecosystems. However, satellite sensors still do not have the combined spatial and spectral resolution to reliably identify buffer vegetation types and conditions. New interpretation strategies need to be developed to maximize the information obtained from high-resolution satellite sensors while minimizing the problems specific to high-resolution imagery, such as high variability within scene elements and within scene objects. The objective of this article is to review applications of remotely sensed data for modeling, designing, and evaluating riparian and wetland buffers.