M. Laura Juárez, M. Gabriela Murúa, M. Gabriela García, Marta Ontivero, M. Teresa Vera, Juan C. Vilardi, Astrid T. Groot, Atilio P. Castagnaro, Gerardo Gastaminza, Eduardo Willink
Journal of Economic Entomology 105 (2), 573-582, (1 April 2012) https://doi.org/10.1603/EC11184
KEYWORDS: fall armyworm, host race, PCR-restriction fragment-length polymorphism, cytochrome oxidase I, South America
Spodoptera frugiperda (J.E. Smith) is composed of two genetically distinct strains, the so-called corn strain and the rice strain. Whether the two strains differ in their host use is unclear, because laboratory experiments have not been able to show consistent host performance or preference differences between them, and field studies showed high rates of hybridization, as well as some degree asymmetric host use. To determine the distribution of the two strains and their association with host plants, we collected fall armyworm larvae from different crops (corn, rice, alfalfa, and sorghum) and grasses in 15 different localities over 4 yr in Argentina, Brazil, and Paraguay. The strain identity was analyzed using two polymorphisms in the mitochondrial cytochrome oxidase subunit I gene. We identified the corn and rice haplotypes and three types of populations were characterized based on the frequencies of the individuals that belonged to any of these haplotypes: in 44% of populations the corn haplotype predominated, in 44% of populations the rice haplotype was the most frequent, and 11% of populations showed both haplotypes at similar proportions. In total, eight populations (47%) showed the expected pattern, two populations (12%) were polymorphic within the same field, and seven populations (41%) showed the inverse pattern. Taken together, there was no consistent pattern of host association between the two sympatric genotypes and their respective host plants. This investigation supports the need for additional studies to determine which other forces keep the genotypes separate, and what is the degree of genetic differentiation between these populations.