Jaka Razinger, Matthias Lutz, Hans-Josef Schroers, Gregor Urek, Jürg Gründer
Journal of Economic Entomology 107 (4), 1348-1354, (1 August 2014) https://doi.org/10.1603/EC14004
KEYWORDS: biological control, Delia radicum, Diptera, entomopathogenic fungi, rhizosphere competence
Delia radicum L. or cabbage maggot is an important pest for Brassicaceous crops. There are currently no registered chemical control agents for its control in Slovenia. Fungal control agents for cabbage maggot were therefore sought among nine rhizosphere-compatible and plant growth-promoting, soil-adapted, and entomopathogenic species to cabbage maggots and were assayed in in vitro and soil laboratory bioassays. In the in vitro tests, the conidial suspensions were applied directly to cabbage maggot eggs. The soil tests mimicked pathways of natural exposure of various insect life stages to the fungal strains. Conidial concentrations used in soil tests were comparable to economic rates for in-furrow application. The following fungi were tested: Trichoderma atroviride P. Karst. (2 isolates), Trichoderma koningiopsis Samuels, C. Suarez & H.C. Evans (1), Trichoderma gamsii Samuels & Druzhin. (3), Beauveria brongniartii (Saccardo) Petch (1), Beauveria bassiana (Balsamo-Crivelli) Vuillemin (2), Metarhizium robertsii J.F. Bisch., Rehner & Humber (1), Metarhizium anisopliae (Metschn.) Sorokin (4), Purpureocillium lilacinum (Thom) Luangsa-ard, Houbraken, Hywel-Jones & Samson (2), and Clonostachys solani f. nigrovirens (J.F.H. Beyma) Schroers (2). Abbott's corrected mortality in the in vitro tests ranged from 0.0 ± 18.9 to 47.6 ± 9.0% and in the soil test from 2.4 ± 13.0 to 68.2 ± 21.5%. Seven isolates (B. hassiana [isolate 1174], C. solani [1828], M. anisopliae [1154 and 1868], T. atroviride [1872], T. koningiopsis [1874], and T. gamsii [1876]) caused significant cabbage maggot mortality in either in vitro or soil tests. The importance of fungal ecology as a criterion during the screening of potential biological control agents is discussed.