Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
The taxonomic status of the medically important spider genus Loxosceles Heineken et Lowe, 1832 (Sicariidae) in Iran, Turkmenistan, and Afghanistan is revised. Two species are described as new to science: Loxosceles coheni sp. n. (♂♀, southwestern Iran) and Loxosceles turanensis sp. n. (♂♀, southern Turkmenistan and eastern Iran). Additionally, Loxosceles aliceaGertsch, 1967 syn. n. (♀, Peru) is synonymized with Loxosceles rufescens (Dufour, 1820). The local distribution of all treated species is mapped (including several new records), and reported cases of loxoscelism from this region are briefly reviewed.
In field studies of tick ecology, observed patterns may be biased by sampling methods. Results can vary by species, life stage, and habitat, and understanding these biases will improve comparisons of data across studies as well as assessment of human disease risk. A direct comparison of flagging versus dragging was conducted in southeastern Virginia. Transects were surveyed over a 6-wk period to identify differences in species and life stage collected, as well as differences between corduroy and denim material and inspection method for drags. Flagging collected more Ixodes affinis Neumann (Acari: Ixodidae) adults and Amblyomma americanum L. (Acari: Ixodidae) adults than dragging. Ground inspection was more efficient than tree inspection for collection of I. affinis adults, with no significant difference in inspection method for any other species or life stage. Corduroy was found to be more effective than denim in collecting nymphal A. americanum, although this may be an artifact of three large samples for corduroy collection of these ticks. There was no significant difference in Ixodes scapularis Say (Acari: Ixodidae) collection in any comparison. Dragging, tree inspection, and denim were not found to be more efficient in any scenario. This is the first comparison of flagging and dragging conducted in the southeastern United States. The community composition of ticks in this region greatly differs from regions where studies of these commonly used sampling techniques have been conducted. As the distributions of ticks continue to change over time, it will be important to evaluate best practices annually.
James C. Burtis, Joseph D. Poggi, Joseph R. McMillan, Scott C. Crans, Scott R. Campbell, Amy Isenberg, Janice Pulver, Patti Casey, Kerry White, Craig Zondag, John R. Badger, Russell Berger, John Betz, Stacey Giordano, Malgorzata Kawalkowski, John L. Petersen, Gregory Williams, Theodore G. Andreadis, Philip M. Armstrong, Laura C. Harrington
Pesticide resistance in arthropod vectors of disease agents is a growing issue globally. Despite the importance of resistance monitoring to inform mosquito control programs, no regional monitoring programs exist in the United States. The Northeastern Regional Center for Excellence in Vector-Borne Diseases (NEVBD) is a consortium of researchers and public health practitioners with a primary goal of supporting regional vector control activities. NEVBD initiated a pesticide resistance monitoring program to detect resistant mosquito populations throughout the northeastern United States. A regionwide survey was distributed to vector control agencies to determine needs and refine program development and in response, a specimen submission system was established, allowing agencies to submit Culex pipiens (L.) (Diptera:Culicidae) and Aedes albopictus (Skuse) (Diptera: Culicidae) for pesticide resistance testing. NEVBD also established larvicide resistance diagnostics for Bacillus thuringiensis israelensis (Bti) and methoprene. Additional diagnostics were developed for Cx. pipiens resistance to Lysinibacillus sphaericus. We received 58 survey responses, representing at least one agency from each of the 13 northeastern U.S. states. Results indicated that larvicides were deployed more frequently than adulticides, but rarely paired with resistance monitoring. Over 18,000 mosquitoes were tested from six states. Widespread low-level (1 × LC-99) methoprene resistance was detected in Cx. pipiens, but not in Ae. albopictus. No resistance to Bti or L. sphaericus was detected. Resistance to pyrethroids was detected in many locations for both species. Our results highlight the need for increased pesticide resistance testing in the United States and we provide guidance for building a centralized pesticide resistance testing program.
We report 28 species of ticks (Acari: Ixodida) from Colorado (CO). We include the soft ticks (Argasidae) Argas (Argas) cooleyi Kohls and Hoogstraal, Argas (Persicargas) radiatus Railliet, Carios (Alectorobius) concanensis (Cooley and Kohls), Carios (Alectorobius) kelleyi (Cooley and Kohls), Ornithodoros (Pavlovskyella) hermsi Wheeler et al., Ornithodoros (Pavlovskyella) parkeri Cooley, Ornithodoros (Pavlovskyella) turicata (Dugès), Otobius (Otobius) lagophilus Cooley and Kohls, and Otobius (Otobius) megnini (Dugès). We include the metastriate hard ticks (Ixodidae) Dermacentor (Americentor) albipictus (Packard), Dermacentor (Dermacentor) andersoni Stiles, Dermacentor (Dermacentor) parumapertus Neumann, Dermacentor (Dermacentor) variabilis (Say), Haemaphysalis (Aboimisalis) chordeilis (Packard), Haemaphysalis (Gonixodes) leporispalustris (Packard), and Rhipicephalus (Rhipicephalus) sanguineus Latreille. Prostriate hard ticks include Ixodes (Ixodiopsis) angustus Neumann, Ixodes (Phoeloioxdes) baergi Cooley and Kohls, Ixodes (Trichotoixodes) brunneus Koch, Ixodes (Scaphixodes) howelli Cooley and Kohls, Ixodes (Phoeloioxdes) kingi Bishopp, Ixodes (Phoeloioxdes) marmotae Cooley and Kohls, Ixodes (Ixodiopsis) ochotonae Gregson, Ixodes (Phoeloioxdes) sculptus Neumann, Ixodes (Ixodiopsis) soricis Gregson, Ixodes (Ixodes) spinipalpis Hadwen and Nuttall, Ixodes (Phoeloioxdes) texanus Banks, and Ixodes (Ixodiopsis) woodi Bishopp. Argas radiatus and Ixodes brunneus represent new state records. Review of collection reports revealed that inclusion of Ixodes (Multidentatus) auritulus (Neumann), Ixodes (Phoeloioxdes) cookei Packard, Ixodes (Phoeloioxdes) marxi Banks, and Ixodes (Ixodes) pacificus Cooley and Kohls is dubious or unconfirmed and, conversely, that C. concanensis and H. chordeilis have distributions that include CO. We list an additional five species occasionally detected and 13 exotic species intercepted in CO. Tick-host associations, geographical distributions, and medical/veterinary importance are included.
Visceral leishmaniasis is spreading in Brazil where the main vector of its agent, Leishmania infantum Nicolle, 1908, is the Lutzomyia longipalpis (Lutz & Neiva, 1912) species complex (Diptera: Psychodidae: Phlebotominae), on which many of the activities of the visceral leishmaniasis surveillance program are based. However, there are areas where canine, and/or human cases have been occurring without the presence of this species complex as in the western part of the Greater São Paulo Metropolitan region, where Embu das Artes municipality is situated. In this area, Pintomyia fischeri (Pinto, 1926) has been implicated as potential vector of Le. infantum but so far its natural infection with this parasite has not yet been ascertained. Therefore, the present study sought to investigate the natural infection in sand flies of a CVL focus in Embu das Artes. The sand fly collections were undertaken with Shannon and CDC traps, monthly, between 1800 and 2100 hours from November 2018 to October 2019, inclusive. A total of 951 sand flies (457 males and 494 females), belonging to 10 species, were captured. Pintomyia fischeri was the predominant species (89.5%); of which 426 females were dissected and one of them (0.23%) was found to be harboring flagellates in its midgut. A sample of these flagellates was isolated in culture and characterized by a 234 base pair fragment of Leishmania heat-shock protein 70 gene (hsp70) and restriction fragment length polymorphism with Hae III restriction enzyme as Le. infantum. This finding reinforces previous evidence of Pi. fischeri as a vector of Le. infantum in foci of visceral leishmaniasis and highlights the importance of vector surveillance in areas where this species occurs.
Phlebotomine sand flies are worldwide vectors of Leishmania parasites as well as other bacterial and viral pathogens. Due to the variable impact of traditional vector control practices, a more ecologically based approach is needed. The goal of this study was to isolate bacteria from the most attractive substrate to gravid Phlebotomus papatasi Scopoli sand flies and determine the role of bacterial volatiles in the oviposition attractancy of P. papatasi using behavioral assays. We hypothesized that gravid sand flies are attracted to bacterially derived semiochemical cues associated with breeding sites. Bacteria were isolated from a larvae-conditioned rearing medium, previously shown to be highly attractive to sand flies. The isolated bacteria were identified by amplifying and sequencing 16S rDNA gene fragments, and 12 distinct bacterial species were selected for two-choice olfactometer bioassays. The mix of 12 bacterial isolates elicited strong attraction at the lower concentration of 107 cells per ml and significant repellence at a high concentration of 109 cells per ml. Three individual isolates (SSI-2, SSI-9, and SSI-11) were particularly attractive at low doses. In general, we observed dose-related effects, with some bacterial isolates stimulating negative and some positive dose–response curves in sand fly attraction. Our study confirms the important role of saprophytic bacteria, gut bacteria, or both, in guiding the oviposition-site selection behavior of sand flies. Identifying the specific attractive semiochemical cues that they produce could lead to development of an attractive lure for surveillance and control of sand flies.
Following the recent discovery of Bourbon virus (BRBV) as a human pathogen, and the isolation of the virus from Amblyomma americanum (L.) collected near the location of a fatal human case, we undertook a series of experiments to assess the laboratory vector competence of this tick species for BRBV. Larval ticks were infected using an immersion technique, and transstadial transmission of virus to the nymphal and then to the adult stages was demonstrated. Transstadially infected nymphs transmitted virus to adult ticks at very high rates during cofeeding, indicating the presence of infectious virus in the saliva of engorging ticks. Vertical transmission by transstadially infected females to their progeny occurred, but at a low rate. Rabbits fed on by infected ticks of all active life stages developed high titers of antibody to the virus, demonstrating host exposure to BRBV antigens/live virus during tick blood feeding. These results demonstrate that A. americanum is a competent vector of BRBV and indicate that cofeeding could be critical for enzootic maintenance.
The common bed bug, Cimex lectularius L., resurged as an important urban pest in the last 20 yr. Yet, there are no commercial repellent products labeled for bed bugs available in the United States. We evaluated the repellency of two catnip oils from newly developed cultivars, CR3 and CR9, and compared each to 10 and 25% N,N-diethyl-meta-toluamide (DEET). CR3 contains 63.4% E,Z-nepatalactone and 27.5% Z,E-nepatalactone, and CR9 contains 94.9% Z,E-nepatalactone. Arena studies showed that CR3 and CR9 oils were more effective than DEET within a 24-h period. At 10% concentration, both CR3 and CR9 oils exhibited a repellency of over 94% during the first 8 h. At 25% concentration, the repellency of CR3 and CR9 oils increased to 100%, and repellency of DEET was 92% during the first 24 h. Repellency of 25% CR3 and CR9 oils became lower than 25% DEET after being aged for 3 d. After 28-d aging, repellency of 25% CR3, CR9, and DEET reduced to 25, 64, and 92%, respectively. Soiled socks were placed above repellent treated bands to determine if the repellent can protect soiled socks from being infested. The 20% CR3 oil prevented 100% of bed bugs from infesting soiled socks showing that it was more effective than DEET. These results indicate that catnip oils from CR3 and CR9 cultivars are more repellent than DEET over a 24-h period following application, but their longevity is shorter than DEET after 72 h.
Tabanid flies (Tabanidae: Diptera) are common hematophagous insects known to transmit some pathogens mechanically or biologically to animals; they are widely distributed throughout the world. However, no tabanid-borne viruses, except mechanically transmitted viruses, have been reported to date. In this study, we conducted RNA virome analysis of several human-biting tabanid species in Japan, to discover and characterize viruses associated with tabanids. A novel flavivirus was encountered during the study in the Japanese horse fly, Tabanus rufidens (Bigot, 1887). The virus was detected only in T. rufidens, but not in other tabanid species, and as such was designated Tabanus rufidens flavivirus (TrFV). TrFV could not be isolated using a mammalian cell line and showed a closer phylogenetic relationship to the classical insect-specific flaviviruses (cISFs) rather than the vertebrate-infecting flaviviruses (VIFs), suggesting that it is a novel member of the cISFs. The first discovery of a cISF from Brachycera provides new insight into the evolutionary history and dynamics of flaviviruses.
Aedes (Stegomyia) aegypti (Linnaeus, 1762) is a mosquito species of significant medical importance. The use of this vector in research studies usually requires a large number of mosquitoes as well as rearing and maintenance in a laboratory-controlled environment. However, laboratory conditions may be different from field environments, presenting stressful challenges such as low food concentration, especially during larval stages, which may, in turn, impair vector biology. Therefore, we tested herein if larval food availability (0.004, 0.009, 0.020, and 0.070% diets) would affect overall adult insect fitness. We observed slower development in mosquitoes fed a 0.004% diet 15 d post-eclosion (DPE) and shorter mean time in mosquitoes fed a 0.020% diet (7 DPE). Larval diet and adult mosquito weight were positively correlated, and heavier females fed higher larval diets exhibited greater blood feeding capacity and oviposition. In addition, larval diet concentrations led to median adult lifespan variations (male/female in days—0.004%: 30 ± 1.41, 45 ± 1.3; 0.009%: 31.5 ± 1.33, 41 ± 1.43; 0.020%: 26 ± 1.18, 41 ± 1.45; 0.070%: 29 ± 1.07, 44 ± 1.34), reduced tolerance to deltamethrin (1 mg/m2) and changes in detoxification enzyme activities. Moreover, in the larval 0.070% diet, females presented higher Zika susceptibility (plaque-forming unit [PFU]: 1.218 × 106) compared with other diets (0.004%: 1.31 × 105; 0.009%: 2.0 × 105; 0.020%: 1.25 × 105 PFU). Altogether, our study demonstrates that larval diet restriction results not only in larval developmental arrest but also in adult fitness impairment, which must be considered in future assessments.
Antibiotic use in livestock accounts for 80% of total antibiotic use in the United States and has been described as the driver for resistance evolution and spread. As clinical infections with multidrug-resistant pathogens are rapidly rising, there remains a missing link between agricultural antibiotic use and its impact on human health. In this study, two species of filth flies from a livestock operation were collected over the course of 11 mo: house flies Musca domestica (L.) (Diptera: Muscidae), representing a generalist feeder, and stable flies Stomoxys calcitrans (L.) (Diptera: Muscidae), representing a specialist (blood) feeder. The prevalence of flies carrying cefotaxime-resistant (CTX-R) bacteria in whole bodies and dissected guts were assayed by culturing on antibiotic-selective media, with distinct colonies identified by Sanger sequencing. Of the 149 flies processed, including 81 house flies and 68 stable flies, 18 isolates of 12 unique bacterial species resistant to high-level cefotaxime were recovered. These isolates also showed resistance to multiple classes of antibiotics. The CTX-R isolates were predominantly recovered from female flies, which bore at least two resistant bacterial species. The majority of resistant bacteria were isolated from the guts encompassing both enteric pathogens and commensals, sharing no overlap between the two fly species. Together, we conclude that house flies and stable flies in the field could harbor multidrug-resistant bacteria. The fly gut may serve as a reservoir for the acquisition and dissemination of resistance genes.
The early arrival and colonization of species belonging to the family Calliphoridae (Insecta: Diptera) on a corpse represent one of the most reliable means of estimating minimum postmortem interval (PMImin). However, information on the development and life cycles of some Argentine species in this family is not complete. The objective of this work was to contribute new information regarding the larval body size of neotropical species that allow, through the construction of forensic methods, the estimation of a more precise and specific PMImin. This work was conducted on laboratory cultures of larvae of Lucilia ochricornis (Wiedemann) and Lucilia purpurascens (Walker) using as average temperatures: 13.4, 15.1, 22.6, and 23.3°C, which represent the four seasons of the year for the province of Salta. With this information, we constructed isomegalen diagrams and growth models for the obtained variables of larval length and body weight. The mean values of length and body weight differ between both species, indicating that L. purpurascens exceeded L. ochricornis in both variables. In contrast, within each species the mean length and weight remained unchanged between culture temperatures for the three larval instars. Isomegalen diagrams can be used for the entire range of temperatures worked in the laboratory, but the body size entered is approximate. The growth models allow the use of point data but are specific for each culture temperature used.
The soft tick Carios kelleyi (Cooley and Kohls), a parasite of bats known to occur in at least 29 of the 48 conterminous U.S. states, is here reported from New Jersey for the first time, based on larvae collected from big brown bats, Eptesicus fuscus. Although thought to be widespread in North America, the ecology of C. kelleyi is not well understood, despite reports of this species feeding on humans and its consequent potential as a disease vector. The association of C. kelleyi with bat species that regularly roost in human-made structures, such as attics and barns, and recent isolations from this tick of pathogens capable of infecting humans, companion animals, and livestock underscore the need for further studies of these bat ectoparasites.
Chrysomya megacephala (Fab. 1794) (Diptera: Calliphoridae) is a very important species for forensic entomology, mainly contributing estimations of the postmortem interval (PMI) in judicial investigations. There are some doubts about the nocturnal oviposition of these flies, which could lead to errors in the PMI calculation. This study aimed to monitor the nocturnal oviposition behavior of this species through four experimental conditions carried out in laboratory. Ten cages, each containing five males and females (n = 100), were kept in a fume hood and subjected to total darkness or to artificial light for 11 consecutive hours. Two verifications were performed to determine whether the females deposited eggs on the substrate of ∼20 g of chicken gizzards per cage. The first verification occurred at 9:00 pm in nocturnal experiments and at 09:00 am in diurnal experiments. The second verification occurred at 05:00 am in nocturnal experiments and at 05:00 pm in diurnal experiments. Each experiment lasted 5 d. Chrysomya megacephala deposited eggs at night under artificial light and in total darkness, but the amount of eggs was significantly lower when compared with the daytime experiments in dark conditions and under natural light. Oviposition occurred when the average temperature was around 25°C (± 2°C) and relative humidity around 73% (± 6%). Night oviposition is a possibility which should not be ruled out. Thus, future experiments are recommended.
Aedes aegypti (Linnaeus, 1762) is the insect vector that transmits several deadly human diseases. Although the egg stage is an important phase of its life cycle, the biology of mosquito egg remains poorly understood. Here, we report our investigations on the chemical factors that induced hatching of Ae. aegypti eggs. Commercial yeast extracts were able to increase egg hatching rate in a dose-dependent manner, with a hatching rate that ranged from approximately 10% with 1 g/liter to 80% with 20 g/liter of yeast extract. Notably, the addition of glutathione, a reducing agent that showed no significant effect on egg hatching by itself, enhanced and stabilized the activity of yeast extract for at least 70 h. Because dissolved oxygen in different treatments was maintained at high levels in a narrow range (92–95%), we proposed that yeast extract contains hatching inducing compound (HIC) which is able to trigger egg hatching independent of dissolved oxygen level. The HIC in yeast extract could prove to be a potential starting point to design an effective tool to forcefully induce mosquito eggs to hatch under unfavorable conditions, functioning as a novel method for vector control.
This study investigates the succession of insects and the length of the decomposition of rabbit carcasses injected with heroin. In total, 24 rabbits (2–2.5 kg, Oryctolagus cuniculus domesticus L.) were used in the study. Twelve carcasses were exposed to insect activity in winter (January and February) and 12 in summer (July and August) in Riyadh, Saudi Arabia. Three replicate experiments were conducted in each season. For each experiment, three rabbits were injected with varying doses of heroin, and the fourth rabbit was used as a control, being injected only with saline solution. Insects belonging to the order Diptera, Coleoptera, and Hymenoptera were attracted to the carcasses. In both of the investigated seasons, heroin appeared to delay the decomposition process but did not have a significant impact on the number of insects. In general, the number of flies in both seasons was substantially higher than that of beetles and ants. During the summer, flies were more attracted to treated carcasses with a higher dose of heroin. Some flies such as Musca domestica L. (Diptera: Muscidae) and Chrysomya albiceps Wiedemann (Diptera: Calliphoridae) and some beetles such as Pimelia boyeri Solier (Coleoptera: Tenebrionidae) were represented on the carcasses by different developmental instars (larvae, pupae, and adults). Overall, heroin has not potential effects on the insect succession patterns of insect, however, influences the decomposition of rabbit carcasses. These findings are important while using insects in medicolegal investigation, since heroin is one of the common poisons used as an addictive agent.
Culicids are the most significant arthropods affecting human health. Thus, their correct identification is critical. The use of Geometric Morphometrics (GM) has been recently incorporated into mosquito taxonomy and has begun to complement classic diagnostic techniques. Since sampling size depends on the number of Landmarks (LMs) used, this study aimed to establish the minimum number of wing LMs needed to optimize GM analysis of mosquito species and/or genera from urban and peri-urban areas of Argentina. Female left wings were used for the optimization phase, in which 17 LMs were reduced to four by iterative LM exclusion. To verify its efficiency, Principal Component Analysis (PCA), Discriminant Analysis (DA), and Canonical Variate Analysis (CVA) were performed. Additionally, a phenogram was constructed to visualize the results. We observed that five LMs for the PCA, CVA, and phenogram and nine for the DA enabled discrimination and/or clustering of almost all species and genera. Therefore, we tested the LM selection by using nine LMs and adding new species. The resulting PCA showed little overlap between species and almost all species clustered as expected, which was also reflected in the phenogram. Significant differences were found between wing shape among all species, together with a low total error rate in the DA. In conclusion, the number of LMs can be reduced and still be used to effectively differentiate and cluster culicids. This is helpful for better exploitation of available material and optimization of data processing time when classic taxonomy methods are inadequate or the material is scarce.
During the transformation of immature aquatic dipteran insects to terrestrial adults, the prothoracic pupal respiratory organ enables pupae to cope with flood-drought alternating environments. Despite its obvious importance, the biology of the organ, including its development, is poorly understood. In this study, the developing gills of several Simulium Latreille (Diptera: Simuliidae) spp. were observed using serial histological sections and compared with data on those of other dipteran families published previously. The formation of some enigmatic features that made the Simulium gill unique is detailed. Through comparisons between taxa, we describe a common developmental pattern in which the prothoracic dorsal disc cells not only morph into the protruding respiratory organ, which is partially or entirely covered with a cuticle layer of plastron, but also invaginate to form a multipart internal chamber that in part gives rise to the anterior spiracle of adult flies. The gill disc resembles wing and leg discs and undergoes cell proliferation, axial outgrowth, and cuticle sheath formation. The overall appendage-like characteristics of the dipteran pupal respiratory organ suggest an ancestral form that gave rise to its current forms, which added more dimensions to the ways that arthropods evolved through appendage adaptation. Our observations provide important background from which further studies into the evolution of the respiratory organ across Diptera can be carried out.
The Neotropical Albitarsis Group is a complex assemblage of essentially isomorphic species which currently comprises eight recognized species—five formally described (Anopheles albitarsis Lynch-Arribalzaga, An. deaneorum Rosa-Freitas, An. janconnae Wilkerson and Sallum, An. marajoara Galvao and Damasceno, An. oryzalimnetes Wilkerson and Motoki) and three molecularly assigned (An. albitarsis F, G & I)—and one mitochondrial lineage (An. albitarsis H). To further explore species recognition within this important group, 658 base pairs of the mitochondrial DNA cytochrome oxidase subunit I (COI) were analyzed from 988 specimens from South America. We conducted statistical parsimony network analysis, generated estimates of haplotype, nucleotide, genetic differentiation, divergence time, and tested the effect of isolation by distance (IBD). Ten clusters were identified, which confirmed the validity of the eight previously determined species, and confirmed the specific status of the previous mitochondrial lineage An. albitarsis H. High levels of diversity were highlighted in two samples from Pará (= An. albitarsis J), which needs further exploration through additional sampling, but which may indicate another cryptic species. The highest intra-specific nucleotide diversity was observed in An. deaneorum, and the lowest in An. marajoara. Significant correlation between genetic and geographical distance was observed only in An. oryzalimnetes and An. albitarsis F. Divergence time within the Albitarsis Group was estimated at 0.58–2.25 Mya, during the Pleistocene. The COI barcode region was considered an effective marker for species recognition within the Albitarsis Group and a network approach was an analytical method to discriminate among species of this group.
Sofía Delgado-Serra, Miriam Viader, Ignacio Ruiz-Arrondo, Miguel Ángel Miranda, Carlos Barceló, Rubén Bueno-Marí, Luis M. Hernández-Triana, Marga Miquel, Katherine Lester, Jose Antonio Jurado-Rivera, Claudia Paredes-Esquivel
Several outbreaks of mosquito-borne diseases have taken place in Europe in recent years. In Spain, both active and passive surveillance have demonstrated that dengue and West Nile viruses are currently circulating, and seven autochthonous dengue cases have been reported in the last 2 yr. The effectiveness of vector control programs largely depends on the accuracy of the taxonomic identification of the species. However, in Spain, identification almost completely relies on the use of morphological keys to characterize the mosquito fauna. This study investigates the congruence between molecular and morphological species boundaries in 13 Spanish mosquito taxa. The Cytochrome c oxidase subunit I (COI) gene region was sequenced from 60 adult specimens collected in Mallorca, plus several representatives from other Spanish regions for comparative purposes. Phylogenetic relationships were established using Bayesian and maximum-likelihood approaches. Using three species delimitation algorithms (ABGD, mPTP, and GMYC), we found strong evidence for cryptic speciation within Anopheles algeriensis Theobald, a widespread mosquito in the Mediterranean basin. We also delimited the Mallorcan rock pool mosquito Aedes mariae (Sergent & Sergent), from mainland European populations. Finally, we found difficulties in the use of wing characters in species keys to distinguish Culiseta annulata (Schrk) from Culiseta subochrea (Edwards). Given that these species are vectors of pathogens of medical relevance and have veterinary importance, their accurate taxonomic identification is essential in European vector surveillance programs.
Dohrniphora cornuta (Bigot) is a forensically important phorid fly indoors and in burial environments. The determination of a minimum postmortem interval (PMImin) often relies on the determination of the age of the immatures. Although the larval development data of D. cornuta under different temperatures has been established, the intrapuparial stage which lasts for about half of the total immature development is scarce. In this study, we investigated the key morphological changes during intrapuparial development at constant temperatures (15, 18, 21, 24, 27, 30, 33, and 36°C), with an aim to estimate the intrapuparial age of D. cornuta. Puparia were sampled at 12-h (24, 27, 30, and 33°C), 24-h (18 and 21°C), and 48-h (15°C) intervals. The morphological developments within the puparium were analyzed using a stereomicroscope after the puparium was removed. The average minimum duration of intrapuparial stage was inversely related to temperature, ranging from 184.79 ± 3.00 h at 30°C to 1102.86 ± 25.55 h at 15°C for female, and 197.40 ± 4.12 h at 30°C to 1175.33 ± 18.55 h at 15°C for male. It did not develop at 36°C. Some morphological traits that changed during development within the puparium could be used as age markers. According to these changes, the intrapuparial stage of D. cornuta was divided into nine stages which could be used for both sexes. This study provides relatively systematic development data of D. cornuta intrapuparial for the estimation of PMImin in forensic entomology.
Macronyssid mites are parasites of reptiles, birds, and mammals. A checklist of macronyssid species of Brazil is provided, containing 13 genera and 26 species collected from 99 host species.
Ana Cristina Bahia, Ana Beatriz F. Barletta, Luciana Conceição Pinto, Alessandra S. Orfanó, Rafael Nacif-Pimenta, Vera Volfova, Volf Petr, Nágila Francinete Costa Secundino, Fernando de Freitas Fernandes, Paulo Filemon P. Pimenta
We investigated by scanning electron microscopy the morphology, distribution, and abundance of antennal sensilla of females Phlebotomus duboscqi sand fly, an important vector of zoonotic cutaneous leishmaniasis at Afrotropical region. Thirteen well-differentiated sensilla were identified, among six types of cuticular sensilla. The probable function of these sensillary types is discussed in relation to their external structure and distribution. Five sensillary types were classified as olfactory sensilla, as they have specific morphological characters of sensilla with this function. Number and distribution of sensilla significantly differed between antennal segments. The results of the present work, besides corroborating in the expansion of the morphological and ultrastructural knowledge of P. duboscqi, can foment future electrophysiological studies for the development of volatile semiochemicals, to be used as attractants in traps for monitoring and selective vector control of this sand fly.
María Carolina Silva-de la Fuente, Alexandr A. Stekolnikov, Thomas Weitzel, Esperanza Beltrami, Constanza Martínez-Valdebenito, Katia Abarca, Gerardo Acosta-Jamett
Three species of chigger mites are recorded in our collections from four species of cricetid rodents on Chiloé Island (southern Chile, Los Lagos Region), an area endemic to scrub typhus (Orientia sp.). Two species are described as new—Herpetacarus (Abonnencia) eloisae sp. nov. and Quadraseta chiloensis sp. nov. One species, Paratrombicula goffiStekolnikov and González-Acuña 2012, is for the first time recorded on a mammal host (one species of cricetid rodent), and its distribution is extended to the Los Lagos Region of Chile. The genus Proschoengastia Vercammen-Grandjean, 1967 is synonymized with the subgenus Herpetacarus (Abonnencia) Vercammen-Grandjean, 1960, and four new combinations are established: Herpetacarus (Abonnencia) herniosa (Brennan and Jones, 1961), comb. nov., Herpetacarus (Abonnencia) insolita (Brennan and Jones, 1961), comb. nov., Herpetacarus (Abonnencia) macrochaeta (Brennan and Jones, 1961), comb. nov., and Herpetacarus (Abonnencia) antarctica (Stekolnikov and Gonzalez-Acuña, 2015), comb. nov.
A relevant species in waste management but also in forensic, medical, and veterinary sciences is the black soldier fly, Hermetia illucens (Linnaeus; Diptera: Stratiomyidae). An ultrastructural study by scanning electron microscopy (SEM) was conducted for the first time on maxillary palps of both sexes, describing in detail the morphology and distribution of sensilla and microtrichia. The maxillary palps, composed of two segments, show sexual dimorphism in length and shape. In both sexes, the first segment is covered only by microtrichia, but the second one is divided into two parts: the proximal one, covered only by microtrichia, and the distal one containing both microtrichia and sensory structures. These structures include two types of sensory pits and one of chaetic sensilla. Due to sexual dimorphism in palp size, females have a higher number of sensory pits. The sexual dimorphism of palps and the presence and role of sensilla in H. illucens was discussed in comparison to other species of the family Stratiomyidae and of other Diptera. This study may represent a base for further investigations on mouthpart structures of this species, involved in key physiological activities, such as feeding, mating and oviposition.
The Asian longhorned tick, Haemaphysalis longicornis Neumann, is a species native to eastern Asia that has recently been discovered in the United States. In its native range, H. longicornis transmits pathogens that cause disease in humans and livestock. It is currently unknown whether H. longicornis will act as a vector in the United States. Understanding its seasonal activity patterns will be important in identifying which times of the year represent greatest potential risk to humans and livestock should this species become a threat to animal or public health. A study site was established in Yonkers, NY near the residence associated with the first reported human bite from H. longicornis in the United States. Ticks were collected once each week from July 2018 to November 2019. Haemaphysalis longicornis larvae were most active from August to November, nymphs from April to July, and adult females from June to September. This pattern of activity suggests that H. longicornis is capable of completing a generation within a single year and matches the patterns observed in its other ranges in the northern hemisphere. The data presented here contribute to a growing database for H. longicornis phenology in the northeastern United States. Potential implications of the short life cycle for the tick's vectorial capacity are discussed.
The biophysical environment plays an important role in the spatio-temporal abundance and distribution of mosquitoes. This has implications for the spread of vectors and diseases they cause across diverse landscapes. Here, we assessed vector mosquito abundances in relation to large water bodies, from three malaria districts in a semi-arid environment. Furthermore, we explored thermal limits to activity of the dominant and most medically important malaria vector across malaria-endemic areas. Mosquitoes were trapped near permanent water bodies across different districts. Critical thermal limits (critical thermal-maxima and -minima) to activity of wild adults and 4th instar larvae Anopheles arabiensis (Diptera: Culicidae) were assessed. Our results showed that Anopheles spp. dominate mosquito communities across all three districts, but that their numbers were far greater in Okavango than in other regions. At the Okavango sites, the numbers of Anopheles spp. decreased with distance from main water source. Anopheles spp. sampled in this region comprised Anopheles gambiae (Giles,1902) and Anopheles funestus (Giles, 1900) species complexes, with the former dominating in numbers. Thermal activity assays showed An. arabiensis females had wider thermal tolerance windows than males while larval thermal activity limits differed significantly across space. These results confirm that the Okavango district should be prioritized for vector control measures. Moreover, intervention strategies should consider recommendations for proximity effects to large water bodies, given the differential risk associated with distance from water. The wider thermal window on female vectors has implications for possible future malaria transmission and diverse habitat utilization under changing environments.
Many species distribution maps indicate the ranges of Aedes aegypti (Linnaeus) and Aedes albopictus (Skuse) overlap in Florida despite the well-documented range reduction of Ae. aegypti. Within the last 30 yr, competitive displacement of Ae. aegypti by Ae. albopictus has resulted in partial spatial segregation of the two species, with Ae. aegypti persisting primarily in urban refugia. We modeled fine-scale distributions of both species, with the goal of capturing the outcome of interspecific competition across space by building habitat suitability maps. We empirically parameterized models by sampling 59 sites in south and central Florida over time and incorporated climatic, landscape, and human population data to identify predictors of habitat suitability for both species. Our results show human density, precipitation, and urban land cover drive Ae. aegypti habitat suitability, compared with exclusively climatic variables driving Ae. albopictus habitat suitability. Remotely sensed variables (macrohabitat) were more predictive than locally collected metrics (microhabitat), although recorded minimum daily temperature showed significant, inverse relationships with both species. We detected minor Aedes habitat segregation; some periurban areas that were highly suitable for Ae. albopictus were unsuitable for Ae. aegypti. Fine-scale empirical models like those presented here have the potential for precise risk assessment and the improvement of operational applications to control container-breeding Aedes mosquitoes.
The global distribution of Aedes albopictus (Skuse) is rapidly expanding which has contributed to the emergence and re-emergence of dengue and chikungunya outbreaks. Improvements in vector surveillance are necessary to facilitate optimized, evidence-based vector control operations. Current trapping technology used to target Ae. albopictus and other Aedes species for vector surveillance are limited in both scale and scope, thus novel tools are required. Here, we evaluated the Male Aedes Sound Trap (MAST) for its capacity to sample male Ae. albopictus. Aims of this study were twofold: 1) to determine the most effective frequency for capturing male Ae. albopictus and 2) to investigate fine-scale variations in male Ae. albopictus abundance. MASTs which produced sound lure frequencies between 500 and 650 Hz captured significantly more male Ae. albopictus than those with sound lure frequencies set to 450 Hz. Further, the higher sound lure frequency of 700 Hz significantly reduced catches relative to 650 Hz. MASTs placed in woodland habitats captured significantly more male Ae. albopictus than MASTs placed near houses. These results provide baseline information for optimizing sound lure frequencies and placement of the MAST to sample male Ae. albopictus in remote areas.
Aedes scapularis (Rondani), a widespread neotropical vector mosquito species, has been included in the mosquito fauna of Florida on the basis of just three larval specimens that were collected in the middle Florida Keys in 1945. Here, we report numerous recent collections of immature and adult Ae. scapularis from multiple locations in two counties of southern Florida. These specimens represent the first records of Ae. scapularis from mainland Florida and the first records of the species in the state since the initial detection of the species 75 yr ago. Collections of both larvae and adults across several years indicate that Ae. scapularis is now established in Broward and Miami-Dade Counties. These contemporary records of this species in Florida may represent novel dispersal and subsequent establishment events from populations outside the United States or a recent reemergence of undetected endemic populations. To confirm morphological identification of Ae. scapularis specimens from Florida, the DNA barcoding region of the cytochrome c oxidase subunit I gene (COI) was sequenced and compared to all other Ochlerotatus Group species from the United States, specifically Aedes condolescens Dyar and Knab (Diptera: Culicidae), Aedes infirmatus Dyar and Knab (Diptera: Culicidae), Aedes thelcter Dyar (Diptera: Culicidae), Aedes tortilis (Theobald) (Diptera: Culicidae), and Aedes trivittatus (Coquillett) (Diptera: Culicidae). Molecular assays and sequencing confirm morphological identification of Ae. scapularis specimens. Maximum likelihood phylogenetic analysis of COI and ITS2 sequences place Florida Ae. scapularis in a distinct clade, but was unable to produce distinct clades for Florida specimens of Ae. condolescens and Ae. tortilis.
Graphical Abstract
VECTOR CONTROL, PEST MANAGEMENT, RESISTANCE, REPELLENTS
Adandé A. Medjigbodo, Luc S. Djogbenou, Aubin A. Koumba, Laurette Djossou, Athanase Badolo, Constantin J. Adoha, Guillaume K. Ketoh, Jacques F. Mavoungou
An effective control of malaria vectors requires an extensive knowledge of mechanisms underlying the resistance-phenotypes developed by these vectors against insecticides. We investigated Anopheles gambiae mosquitoes from Benin and Togo for their intensity of insecticide resistance and we discussed the involvement of genotyped mechanisms in the resistance-phenotypes observed. Three- to five-day-old adult mosquitoes emerged from field and laboratory An. gambiae larvae were assayed using WHO tube intensity tests against various doses of deltamethrin: 1× (0.05%); 2× (0.1%); 5× (0.25%); 7.5× (0.375%) and those of pirimiphos-methyl: 0.5× (0.125%); 1× (0.25%). Members of An. gambiae complex were screened in field populations using polymerase chain reaction (PCR) assays. The presence of kdrR(1014F/1014S) and ace-1R(119S) mutations was also investigated using TaqMan and PCR-RFLP techniques, respectively. Anopheles gambiae from field were very resistant to deltamethrin, whereas KisKdr and AcerKdrKis strains displayed 100% mortality rates at 2× the diagnostic dose. In contrast, the field mosquitoes displayed a low resistance-intensity against 1× the diagnostic dose of pirimiphos-methyl, whereas AcerKis and AcerKdrKis strains showed susceptibility at 0.5× the diagnostic dose. Anopheles gambiae s.s., Anopheles coluzzii, and Anopheles arabiensis were identified. Allelic frequencies of kdrR (1014F) and ace-1R (119S) mutations in the field populations varied from 0.65 to 1 and 0 to 0.84, respectively. The field An. gambiae displayed high-resistance levels against deltamethrin and pirimiphos-methyl when compared with those of the laboratory An. gambiae-resistant strains. These results exhibit the complexity of underlying insecticide resistance mechanisms in these field malaria vectors.
Graphical Abstract
Summary: The field An. gambiae displayed high resistance levels against deltamethrin and pirimiphos-methyl when compared to those of the laboratory An. gambiae resistant strains. These results exhibit the complexity of underlying insecticide resistance mechanisms in these field malaria vectors.
Figure. (a) Deltamethrin and (b) pirimiphos-methyl exposures.
Ashley J. Janich, Karla Saavedra-Rodriguez, Farah Z. Vera-Maloof, Rebekah C. Kading, Américo D. Rodríguez, Patricia Penilla-Navarro, Alma D. López-Solis, Francisco Solis-Santoyo, Rushika Perera, William C. Black IV
There are major public health concerns regarding the spread of mosquito-borne diseases such as dengue, Zika, and chikungunya, which are mainly controlled by using insecticides against the vectors, Aedes aegypti (Linnaeus) and Aedes albopictus (Skuse). Pyrethroids are the primary class of insecticides used for vector control, due to their rapid knockdown effect and low toxicity to vertebrates. Unfortunately, continued use of pyrethroids has led to widespread insecticide resistance in Ae. aegypti; however, we lack information for Ae. albopictus—a sympatric species in Chiapas since 2002. In this study, we evaluated the permethrin resistance status of Ae. albopictus collected from Mexico and Texas. We also selected for permethrin resistance in the laboratory and investigated the potential mechanisms conferring resistance in this species. Knockdown resistance mutations, specifically F1534C, in the voltage-gated sodium channel gene, and increased activity of detoxifying enzymes were evaluated. Low levels of permethrin resistance (<2.4-fold) were observed in our field populations of Ae. albopictus and the F1534C mutation was not detected in any of the sites. Low levels of resistance were also observed in the artificially selected strain. There was significantly higher cytochrome P450 activity in our permethrin-selected and nonselected strains from Mexico compared to the control strain. Our results suggest the Ae. albopictus sampled from 2016 are mostly susceptible to pyrethroids. These results contrast with the high levels of permethrin resistance (>58-fold) found in Ae. aegypti from the same sites in Mexico. This research indicates the importance of continued monitoring of Ae. albopictus populations to prevent resistance from developing in the future.
Lyme disease is the most common vector-borne disease in the United States with hotspots in the Northeast and Midwest. Integrated vector control for mosquito-borne disease prevention is often organized at the community level, but tick control is primarily coordinated at the household and individual level. Management of the blacklegged tick, Ixodes scapularis (Say), the vector of the causative agent of Lyme disease in the Midwest and eastern United States in peridomestic environments may be critical as many tick encounters are reported to occur in the yard. Therefore, we assessed the effectiveness of a widely available and low-cost pesticide that targets common lawn pests and is labeled for use against ticks. In June 2019, we evaluated a granular form of gamma-cyhalothrin in a placebo-controlled residential backyard study (n = 90) in two communities in Wisconsin. The product applied by the research team reduced nymphal blacklegged ticks in plots established in the lawn part of the ecotone by 97% one week after application at both communities and by 89–97% three to four weeks postapplication. The proportion of homes with at least one nymphal tick postapplication was significantly lower at acaricide-treated homes and ranged from 4.2 to 29.2% compared with placebo homes where at least one nymphal tick was found at 50–81.5% of homes. These results support the efficacy of a low-cost do-it-yourself strategy for homeowners seeking to reduce blacklegged ticks in the yard.
Exophilic vectors are an important contributor to residual malaria transmission. Wearable spatial repellents (SR) can potentially provide personal protection in early evening hours before people retire indoors. An SR prototype for passive delivery of transfluthrin (TFT) for protecting humans against nocturnal mosquitoes in Kanchanaburi, western Thailand, is evaluated. A plastic polyethylene terephthalate (PET) sheet (676 cm2) treated with 55-mg TFT (TFT-PET), attached to the back of short-sleeve vest worn by human collector, was evaluated under semifield and outdoor conditions. Field-caught, nonblood-fed female Anopheles minimus s.l. were released in a 40 m length, semifield screened enclosure. Two collectors positioned at opposite ends conducted 12-h human-landing collections (HLC). The outdoor experiment was conducted between treatments among four collectors at four equidistant positions who performed HLC. Both trials were conducted for 30 consecutive nights. TFT-PET provided 67% greater protection (P < 0.001) for 12 h compared with unprotected control, a threefold reduction in the attack. In outdoor trials, TFT-PET provided only 16% protection against An. harrisoni Harbach & Manguin (Diptera: Culicidae) compared with unprotected collector (P = 0.0213). The TFT-PET vest reduced nonanophelines landing by 1.4-fold compared with the PET control with a 29% protective efficacy. These findings suggest that TFT-PET had diminished protective efficacy in an open field environment. Nonetheless, the concept of a wearable TFT emanatory device has the potential for protecting against outdoor biting mosquitoes. Further development of portable SR tools is required, active ingredient selection and dose optimization, and more suitable device design and materials for advancing product feasibility.
Donald A. Yee, Catherine Dean, Cameron Webb, Jennifer A. Henke, Gabriela Perezchica-Harvey, Gregory S. White, Ary Faraji, Joshua D. Macaluso, Rebecca Christofferson
Various products and insecticides are available that purport to reduce wild populations of adult mosquitoes. Recently, several manufacturers and general public comments on the internet have promoted devices that claim that ingestion of salt will significantly reduce populations of wild mosquitoes to near zero; there are no known scientific efficacy data that support these claims. We tested the survival of nine mosquito species of pest and public health importance across four adult diets: Water Only, Sugar Water Only (8.00%), Salt Water Only (1.03%), and Sugar + Salt Water. Species included the following: Aedes aegypti (L.), Aedes albopictus (Skuse), Aedes dorsalis (Meigen), Aedes notoscriptus (Skuse), Aedes vigilax (Skuse), Anopheles quadrimaculatus (Say), Culex pipiens (L.), Culex quinquefasciatus (Say), and Culex tarsalis (Coquillett). Male and female mosquitoes were placed in cages and allowed to feed on liquid diets under controlled environmental conditions for 1 wk. For seven of the nine species, adult survival was significantly higher in the presence (Sugar Water, Sugar + Salt Water) versus the absence (Water Only, Salt Only) of sugar, with no indication that salt had any effect on survival. Anopheles quadrimaculatus showed intermediate survival in Sugar + Salt to either Sugar Only or no sugar diets, whereas Aedes dorsalis showed low survival in Salt Only versus other diets. Based on our data and coupled with the fact that mosquitoes have physiological and behavioral adaptations that allow them to avoid or process excess salt (as found in blood meals), we conclude that there is no scientific foundation for salt-based control methods of mosquitoes.
Olga Belevich, Yury Yurchenko, Alexander Alekseev, Oxana Kotina, Vyacheslav Odeyanko, Yury Tsentalovich, Lyudmila Yanshole, Vadim Kryukov, Victor Danilov, Victor Glupov
The toxic effects of an avermectin-impregnated fine plant powder (AIFP) against larval Aedes aegypti L. (Diptera: Culicidae), Culex modestus Ficalbi (Diptera: Culicidae), and Anopheles messeae Falleroni (Diptera: Culicidae), as well as selected nontarget aquatic invertebrates, were studied under laboratory conditions. The possibility of trophic transfer of avermectins (AVMs) through the food chain and their toxic effects on predaceous species fed AIFP-treated mosquito larvae was also evaluated. Among mosquitoes, Anopheles messeae were the most sensitive to AIFP, while Cx. modestus exhibited the least sensitivity to this formulation. Among nontarget aquatic invertebrates, the greatest toxicity of AIFP was observed for benthic species (larval Chironomus sp. Meigen (Diptera: Chironomidae), whereas predators (dragonflies, water beetles, and water bugs) exhibited the lowest AIFP sensitivity. AIFP sensitivity of the clam shrimp Lynceus brachyurus O. F. Muller (Diplostraca: Lynceidae), the phantom midge Chaoborus crystallinus De Geer (Diptera: Chaoboridae), and the mayfly Caenis robusta Eaton (Ephemeroptera: Caenidae) was intermediate and similar to the sensitivity of the mosquito Cx. modestus. However, these nontarget species were more resistant than An. messeae and Ae. aegypti. Solid-phase extraction of mosquito larvae treated with AIFP and subsequent high-performance liquid chromatography (HPLC) analysis of the extracts revealed an AVM concentration of up to 2.1 ± 0.3 µg/g. Feeding the creeping water bug Ilyocoris cimicoides L. (Hemiptera: Naucoridae) on the AIFP-treated mosquito larvae resulted in 51% mortality of the predaceous species. But no toxicity was observed for Aeshna mixta Latreille (Odonata: Aeshnidae) dragonfly larvae fed those mosquito larvae. The results of this work showed that this AVM formulation can be effective against mosquito larvae.
Indoor residual spraying (IRS) was applied in addition to the use of long-lasting insecticidal nets in the South West in Burkina Faso, where Anopheles gambiae s.l. the major malaria vector was resistant to pyrethroids. This study was designed to evaluate the efficacy and residual life of bendiocarb (active ingredient) used for spraying on different wall surfaces (mud and cement). Cone bioassays were done monthly with the susceptible An. gambiae ‘Kisumu’ strain and the local wild populations to determine the duration for which insecticide was effective in killing mosquitoes. Cone bioassay data showed low efficacy and short persistence of bendiocarb applied on mud and cement walls, lasting 2 mo with the susceptible insectary strain and less than 1 mo with An. gambiae wild populations. In addition, WHO tube assays confirmed resistance of An. gambiae wild populations to 0.1% bendiocarb with mortality rates less than 80% in both study sites (sprayed and unsprayed sites). The pilot study of IRS with bendiocarb showed that the residual efficacy of bendiocarb was very short, and resistance to bendiocarb was confirmed in wild populations of An. gambiae s.l. Therefore, Ficam 80 WP was not suitable for IRS in this area due to the short residual duration related mainly to vectors resistance to bendiocarb. While waiting for innovative malaria control tool, alternative insecticide (organophosphate or neonicotinoid classes) or combinations of insecticides have to be used for insecticide resistance management in Burkina Faso.
Highly residual pyrethroids such as permethrin have been used for controlling mosquitoes that transmit infectious diseases. However, the selective pressure from such insecticides may result in cross-resistance against other pyrethroids used for household insecticides. In this study, we investigated the susceptibility of Culex quinquefasciatus Say collected from Brazil and Myanmar to permethrin in addition to four types of household pyrethroids. Both strains exhibited high resistance against all pyrethroids tested, indicating cross-resistance. Furthermore, we detected the knockdown resistance (kdr) mutations L932F+I936V in the voltage-gated sodium channel gene (VGSC) in the Brazilian strain. Notably, the L932F+I936V haplotype has previously been observed in in silico data, but it should be detected not directly from living insects. In comparison, a common kdr mutation, L1014F, was detected from the Myanmar strain. Although L1014F was also detected from the Brazilian strain, the allele frequency was too low to affect resistance. Both strains harbored the resistance-associated haplotypes of the cytochrome P450 gene, CYP9M10. The Brazilian strain demonstrated comparable resistance against pyrethroids as that of the Myanmar strain even when a cytochrome P450 inhibitor, piperonyl butoxide was added to the bioassay. Our results suggested that the L932F+I936V mutations confer the Brazilian strain of Cx. Quiquefasciatus with resistance at a comparable level to that conferred by the well-recognized kdr mutation L1014F in the Myanmar strain. The identification of unexplored mutations may improve the diagnosis and understanding of resistance of this medically important species.
We compared the ability of product formulations representing a synthetic pyrethroid acaricide (Talstar P Professional Insecticide), a natural product-based acaricide (Essentria IC3), and an entomopathogenic fungal acaricide (Met52 EC Bioinsecticide) to suppress Ixodes scapularis Say and Amblyomma americanum (L.) nymphs when applied following USEPA approved manufacturers' label recommendations for tick control using hand-pumped knapsack sprayers before the beginning of their seasonal activity period in the spring. We applied Met52 EC Bioinsecticide (11% Metarhizium anisopliae Strain F52) to five 100 m2 plots (10.6 ml AI/plot) in mid-April 2020. Two weeks later at the end of April 2020, we treated an additional five 100 m2 plots each with either Talstar P Professional Insecticide (7.9% bifenthrin @ 2.5 ml AI/plot) or Essentria IC3 (10% rosemary oil, 5% geraniol, and 2% peppermint oil @ 86.6 ml AI/plot). Weekly sampling of all plots through the end of June 2020 showed that both Met52 EC Bioinsecticide and Essentria IC3 failed to maintain a 90% suppression threshold for I. scapularis, compared to control plots, and required two additional applications over the course of the trial. In contrast, Talstar P Professional Insecticide suppressed 100% of I. scapularis nymphs and ≥96 and 100% of A. americanum nymphs and adults, respectively. Such pre-season applications of synthetic pyrethroids significantly reduce the early season acarological risk for exposure to host-seeking ticks as well as the frequency of acaricide applications.
Vector-borne diseases account for 17% of infectious diseases, leading to more than one million deaths each year. Mosquitoes are responsible for 90% of the casualties and alternative control methods to insecticides are urgently needed, especially against Aedes vectors. Aedes albopictus is a particularly important species, causing major public health problems because it is a vector of several arboviruses and has a strong invasive behavior. Various genetic control methods have been proposed to be integrated into the management strategies of Aedes species, among which the sterile insect technique (SIT), which proved efficient against various insect pests and vectors. However, the ability of released irradiated sterile male mosquitoes to compete with their wild counterparts and induce sterility in wild females, which is critical to the success of this strategy, remained poorly defined. Here, we assessed the field competitiveness of Ae. albopictus irradiated male using data from eight release trials implemented in Northern Italy for 3 yr. Sterile males were capable of inducing a good level of sterility in the wild female population, however, with high variability in time and space. The field competitiveness of the released males was strongly negatively correlated with the ratio of sterile to wild males. This should be taken into consideration when designing future programs to suppress field populations of Aedes mosquitoes.
Using next-generation sequencing DNA barcoding, we aimed to determine: 1) if the larval bloodmeal can be detected in Ixodes scapularis nymphs and 2) the post-moult temporal window for detection of the larval bloodmeal. Subsets of 30 nymphs fed on a domestic rabbit (Oryctolagus cuniculus Linnaeus, Lagomorphia: Leporidae) as larvae were reared and frozen at 11 time points post-moult, up to 150 d. Vertebrate DNA was amplified using novel universal (UP) and species-specific primers (SSP) and sequenced for comparison against cytochrome c oxidase subunit I barcodes to infer host identification. Detectable bloodmeals decreased as time since moult increased for both assays. For the SSP assay, detection of bloodmeals decreased from 96.7% (n = 29/30) in day 0 nymphs to 3.3% (n = 1/30) and 6.7% (n = 2/30) at 4- and 5-mo post-moult, respectively. A shorter temporal detection period was achieved with the UP assay, declining from 16.7% (n = 5/30) in day 0 nymphs to 0/30 in 3-d-old nymphs. Bloodmeal detection was nonexistent for the remaining cohorts, with the exception of 1/30 nymphs at 2-mo post-moult. Host detection was significantly more likely using the SSP assay compared to the UP assay in the first three time cohorts (day 0: χ2 = 39.1, P < 0.005; day 2: χ2 = 19.2, P < 0.005; day 3: χ2 = 23.3, P < 0.005). Regardless of the primer set used, the next-generation sequencing DNA barcoding assay was able to detect host DNA from a larval bloodmeal in the nymphal life stage; however, a short window with a high proportion of detection post-moult was achieved.
Tick identification is critical for assessing disease risk from a tick bite and for determining requisite treatment. Data from the University of Rhode Island'sTickEncounter Resource Center's photo-based surveillance system, TickSpotters, indicate that users incorrectly identified their submitted specimen 83% of the time. Of the top four most commonly submitted tick species, western blacklegged ticks (Ixodes pacificus Cooley & Kohls [Ixodida: Ixodidae]) had the largest proportion of unidentified or misidentified submissions (87.7% incorrectly identified to species), followed by lone star ticks (Amblyomma americanum Linneaus [Ixodida: Ixodidae]; 86.8% incorrect), American dog ticks (Dermacentor variabilis Say [Ixodida: Ixodidae]; 80.7% incorrect), and blacklegged ticks (Ixodes scapularis Say [Ixodida: Ixodidae]; 77.1% incorrect). More than one quarter of participants (26.3%) submitted photographs of ticks that had been feeding for at least 2.5 d, suggesting heightened risk. Logistic regression generalized linear models suggested that participants were significantly more likely to misidentify nymph-stage ticks than adult ticks (odds ratio [OR] = 0.40, 95% confidence interval [CI]: 0.23, 0.68, P < 0.001). Ticks reported on pets were more likely to be identified correctly than those found on humans (OR = 1.07, 95% CI: 1.01–2.04, P < 0.001), and ticks feeding for 2.5 d or longer were more likely to be misidentified than those having fed for one day or less (OR = 0.43, 95% CI: 0.29–0.65, P < 0.001). State and region of residence and season of submission did not contribute significantly to the optimal model. These findings provide targets for future educational efforts and underscore the value of photograph-based tick surveillance to elucidate these knowledge gaps.
The Asian tiger mosquito Aedes albopictus (Skuse 1894) is assuming an ever-increasing importance as invasive species in Europe and consequently as human health and nuisance concern. In Central Italy, the species has been recently involved in a chikungunya outbreak. A 3 yr Ae. albopictus monitoring was carried out in 21 municipalities of the Lazio region (Central Italy), belonging to three provinces. Samplings were performed on a weekly basis using ovitraps, in order to investigate climatic and spatial variables driving egg abundance and Ae. albopictus period of activity. A temperature of 10.4°C was indicated as lower threshold for the onset of egg-laying activity, together with a photoperiod of 13:11 (L:D) h. The whole oviposition activity lasted 8 mo (May–December), with 95% of eggs laid between early June and mid-November and a peak at the end of August. Egg abundance was positively influenced by accumulated temperature (AT) of the 4 wk preceding sampling and negatively by precipitation during the week before. Egg-laying activity dropped with decreasing AT, increasing rainfall, and with a photoperiod below 10:14 (L:D) h. Our results pinpointed the importance of fine-scaled spatial features on egg abundance. Some of these fine-scaled characteristics have been highlighted, such as the presence of vegetation and human footprint index. Our model estimated an almost doubled maximum number of laid eggs for the maximum value of human footprint. Compelling evidence of the relevance of fine-scaled characteristics was reported, describing cases where human-made breeding sites driven the abundance of Ae. albopictus.
Lyme disease incidence is increasing in the United States despite myriad efforts to educate individuals about effective prevention practices to reduce exposure to nymphal Ixodes scapularis Say (Acari: Ixodidae) (blacklegged tick), the primary vector of the pathogen causing Lyme disease. Furthermore, Lyme prevention educational needs currently exceed the ability of public health professionals to deliver the information in person. Past work has shown there is especially high confusion regarding the use of acaricides for tick management by homeowners. Story-based education is known to engage individuals and change behaviors. To increase the reach and engagement regarding Lyme disease prevention practices, especially residential acaricide use, we created short, story-based educational films (Spray Safe, Play Safe) and evaluated their educational benefit with a survey pre- and post-viewing. We determined that after viewing the films, a significantly higher percentage of respondents reported increased confidence in identifying the riskiest areas in their yards for ticks, using personal protective measures to prevent tick bites, using tick-safe landscaping, and using tick control products. This study also suggests that using short, engaging films that can be posted to popular websites and social media outlets could be employed more frequently for successful and engaging Lyme disease education, as creative and up-to-date educational methods are needed.
Lyme disease (LD) is the most common vector-borne disease in the United States. To assess whether a tick bite puts someone at risk for LD, adequate tick identification skills are needed. We surveyed residents of a high LD-incidence state, Wisconsin, on their ability to distinguish ticks from insects and to identify the specimens that could transmit the LD causative agent. Surveys were conducted using resin blocks with four insects and four tick specimens embedded. About half of the participants (64 of 130) recognized all of the ticks, and 60% of those individuals chose only ticks and no insects.Younger participants (18- to 44-yr old) were more likely to identify ticks correctly compared with those 45 yr and older. Participants who agreed strongly with the statement ‘I know a lot about ticks’ were also likelier to correctly identify ticks. When asked to identify which specimens could transmit LD, less than 25% of participants chose both the Ixodes scapularis Say adult female and nymph and about half of those (15% of participants) picked only those two and no other specimens. Although the relatively small convenience sample was biased toward younger participants who consider themselves ‘outdoorsy’, results showed that further assessments of tick recognition skills are needed to understand what determines whether people can recognize medically important ticks and to evaluate the potential benefits of enhanced education. In addition to the value of the resin blocks as research tools, the blocks may be useful as training tools to improve tick check efficacy.
The effect of human-associated habitat degradation on tsetse populations is well established. However, more insights are needed into how gradual human encroachment into tsetse fly belts affect tsetse populations. This study investigated how wing vein length, wing fray categories, and hunger stages, taken as indicators of body size, age, and levels of access to hosts, respectively, in Glossina morsitans morsitans Westwood (Diptera: Glossinidae) and Glossina pallidipes Austen (Diptera: Glossinidae), varied along a transect from the edge into inner parts of the tsetse belt, in sites that had human settlement either concentrated at the edge of belt or evenly distributed along transect line, in north-eastern Zambia. Black-screen fly round and Epsilon traps were used in a cross-sectional survey on tsetse flies at three sites, following a transect line marked by a road running from the edge into the inner parts of the tsetse belt, per site. Two sites had human settlement concentrated at or close to the edge of the tsetse belt, whereas the third had human settlement evenly distributed along the transect line. Where settlements were concentrated at the edge of tsetse belt, increase in distance from the settlements was associated with increase in wing vein length and a reduction in the proportion of older, and hungry, tsetse flies. Increase in distance from human settlements was associated with improved tsetse well-being, likely due to increase in habitat quality due to decrease in effects of human activities.
Larval therapy (LT) is a therapeutic modality that uses larvae of necrophagous flies for the treatment of wounds. The use of this therapy presents several benefits, due to the action of the larvae that remove necrotic tissue selectively, exercising antimicrobial action, and promoting healing. There are situations in which LT proves to be the only or the best alternative for the patient, such as wounds infected by multidrug-resistant microorganisms or when treatment difficulties may lead to an indication for amputation. The purpose of this study was to compare the efficiency of LT, using larvae of Chrysomya megacephala, with that of antibiotic therapy in the treatment of cutaneous wounds infected with Pseudomonas aeruginosa. Twenty-four rabbits were used to perform the experiment, distributed in four groups: group 1, induced wound without bacterial infection; group 2, induced wound with bacterial infection; group 3, induced wound with bacterial infection and antibiotic therapy; group 4, induced wound with bacterial infection and LT. The macroscopic, microscopic, and statistical analyses indicated that LT was as effective as antibiotic therapy in wound healing.
Dirofilaria immitis (Leidy, 1856) and Dirofilaria repens (Railliet & Henry, 1911) are mosquito-borne filarial nematodes that primarily affect dogs, causing heartworm disease and subcutaneous dirofilariosis. The canine heartworm is reported in different provinces in Turkey. However, studies about the transmitting mosquito species are limited. Hence, this study aimed to investigate potential vectors of D. immitis and D. repens in Aras Valley, Turkey. In total, 17,995 female mosquitoes were collected from eight villages during three mosquito seasons (2012–2014) in Aras Valley, located in north-eastern Turkey. A total of 1,054 DNA pools (527 abdomen and 527 head-thorax) were tested with Dirofilaria primers by multiplex-polymerase chain reaction (PCR). Aedes caspius was the most abundant species in collection sites with 90%; this was followed by Culex theileri Theobald, 1903 (Diptera: Culicidae) (7.31%), Anopheles maculipennis Meigen 1818 (Diptera: Culicidae) (1.28%), Culex pipiens Linnaeus, 1758 (Diptera: Culicidae) (0.43%), (Anopheles) hyrcanus (Pallas, 1771) (Diptera: Culicidae) (0.37%), Aedes vexans (Meigen, 1830) (Diptera: Culicidae) (0.25%), and Culiseta annulata Schrank, 1776 (Diptera:Culicidae) (0.02%). Dirofilaria immitis and D. repens were detected in mosquito pools from five villages. The total Dirofilaria spp. estimated infection rate was 1.33%. The highest estimated infection rate was found in Ae. vexans (6.66%) and the lowest was in Ae. caspius (1.26%). The results show that An. maculipennis sl, Ae. caspius, Ae. vexans, Cx. theileri and Cx. pipiens are potential vectors of D. immitis and D. repens with DNA in head-thorax pools; An. hyrcanus is also a likely vector, but Dirofilaria DNA was found only in abdomen pools for the study area. This study revealed new potential vector species for D. immitis. Mosquitoes with natural infections of D. repens were reported for the first time in Turkey.
Although different feeding habits have been reported for Sarcophaginae (Diptera, Sarcophagidae), most species are associated with decomposing organic matter such as feces and decaying corpses. This study provides the synanthropy index for males of species of Sarcophaginae collected during a 12-mo period in three different environments (urban, rural, and wild) of the state of Rio Grande do Sul, in Southern Brazil, linking this parameter with the sanitary issue. This article also investigated the presence of pathogenic bacteria on the external surface of Oxysarcodexia paulistanensis (Mattos), the most abundant species collected using a sanitized entomological net. Almost all the species collected most abundantly, including O. paulistanensis (n = 241), Ravinia advena (Walker) (n = 87), and O. thornax (Walker) (n = 58), were classified as synanthropic; O. thornax was the species with the highest synanthropy index (+80.3). Escherichia coli (Escherich), Shigella spp. (Enterobacteriaceae), and Staphylococcus aureus (Rosenbach) (Staphylococcaceae) were isolated and identified from the external surface of O. paulistanensis. The isolation and identification of pathogenic bacteria, and their synanthropic behavior, adds weight to potential role of some flesh flies, as O. paulistanensis, in a sanitary context.
The blacklegged tick (Ixodes scapularis Say) is the primary vector of Borrelia burgdorferi sensu stricto (Spirochaetales: Spirochaetaceae), the Lyme disease agent in North America. The basic reproduction number (R0) for B. burgdorferi in I. scapularis in the Northeast is highly sensitive to the probability that engorged larvae survive the winter, molt into nymphs, and find a host. These processes are dependent on local environmental variables, including climate, h-ost population size and movement, and tick behavior. A simple model is presented for estimating host-finding success from the ratio of tick abundance in two subsequent years, accounting for overwinter survival and possible differences in host associations between nymphs and larvae. This model was parameterized using data from two sites in mainland Connecticut and two on Block Island, RI. Host abundance and tick burdens were estimated via mark–recapture trapping of the primary host, Peromyscus leucopus Rafinesque. Overwintering survival was estimated using engorged larvae placed in field enclosures at each site. Only nymphs were recovered alive, and no significant differences in model parameters were observed between Connecticut and Block Island. Host-finding success was predicted to be high across a wide range of host association patterns at three of four sites. Assuming equivalent host association between larvae and nymphs, R0 was also estimated to be greater than one at three of four sites, suggesting these conditions allow for the persistence of B. burgdorferi. The model output was highly sensitive to differences between nymphal and larval host associations.
Our article documents the presence of Aedes albopictus (Skuse) from urban and rural locations in the lower Himalaya Mountains, northern Pakistan. Larvae were collected from graveyards, junkyards, plant nurseries, parks, and houses. Used tires, bird drinking pots, and water storage containers were the most common containers used by this mosquito. In the absence of Aedes aegypti (L.) (Diptera: Culicidae), Ae. albopictus appears to be the primary vector of recent dengue virus outbreaks.
Only one previous record of an exotic tick on a Brazilian traveler has been reported. Here, we report the detection of Dermacentor andersoni (Stiles) in Brazil while attached to a human traveler returning from the United States. This report is the fifth record of D. andersoni as an exotic tick, and the second record of an exotic tick on a South American traveler.
Aedes albopictus (Skuse) (Diptera: Culicidae) is one of the most invasive species globally, and has led to rapid declines and local extirpations of resident mosquitoes where it becomes established. A potential mechanism behind these displacements is the superior competitive ability of Ae. albopictus in larval habitats. Research on the context-dependent nature of competitive displacement predicts that Ae. albopictus will not replace native Aedes triseriatus (Say) (Diptera: Culicidae) in treeholes but could do so in artificial container habitats. Aedes albopictus remains rare in temperate treeholes but less is known about how Ae. albopictus fares in artificial containers in forests. Tyson Research Center (TRC) is a field station composed of mostly oak-hickory forest located outside Saint Louis, MO. The container community has been studied regularly at TRC since 2007 with permanently established artificial containers on the property since 2013. Aedes albopictus was detected each year when these communities were sampled; however, its abundance remains low and it fails to numerically dominate other species in these communities. We present data that show Ae. albopictus numbers have not increased in the last decade. We compare egg counts from 2007 to 2016 and combine larval sample data from 2012 to 2017.We present average larval densities and prevalence of Ae. albopictus and two competitors, Ae. triseriatus and Aedes japonicus (Theobald) (Diptera: Culicidae), as well as monthly averages by year. These data highlight a circumstance in which Ae. albopictus fails to dominate the Aedes community despite it doing so in more human-impacted habitats. We present hypotheses for these patterns based upon abiotic and biotic environmental conditions.
The northern distributional limit of Dermacentor variabilis Say, the American dog tick, is expanding in Saskatchewan and Manitoba (western Canada). The ability of D. variabilis to continue to expand its range northwards will depend upon the ability of individuals within populations at the species distributional edge to withstand very low temperatures during winter. One component of cold hardiness is the supercooling point (SCP), the temperature below 0°C at which an individual freezes. In this study, the SCP was determined for 94 questing D. variabilis adults (44 females and 50 males) from an established population near Blackstrap Provincial Park in Saskatchewan. SCP values ranged from –18.2 to –6.7°C, with a median of –13.3°C. This suggests that host-seeking D. variabilis adults differ in their ability to survive exposure to subzero temperatures, for at least a short period of time, without freezing. The distribution of SCPs was bimodal, but there was no significant difference in SCP values between female and male ticks, and no relationship between SCP and tick body weight. It remains to be determined what factors contribute to the variation in SCP values among questing D. variabilis adults.
Adding lures can improve the efficiency of mosquito ovitraps used for monitoring or in attract-and-kill pest management. Easily produced, low-to-no cost bait would be ideal for remote field sites and community-run vector management. Plant infusions are popular ovitrap baits for their low cost and potent attractiveness, attributed either to the plants or their microbiomes. We tested fermented leaf infusions of the wax apple tree, Syzygium samarangense (Blume) Merr. & Perry, as bait in lethal ovitraps in urban Taipei with Bti larvicide. All trapped insects were inferred to be Asian tiger mosquito, Aedes albopictus (Skuse). The bait significantly increased the yield of the traps, with no negative interactions with the larvicide in either direction. Syzgium samarangense leaves are readily available across Taiwan, making their infusion an easy bait to greatly improve ovitrap efficiency.
Graphical Abstract
Syzygium samarangense, Aedes albopictus, and Bacillus thuringiensis.
VECTOR CONTROL, PEST MANAGEMENT, RESISTANCE, REPELLENTS
Leishmania major (Yakimoff & Schokhor, 1914), an important causative agent of Old World Cutaneous Leishmaniasis (CL), is transmitted by sand flies among a limited number of gerbilline reservoir-species. We can take advantage of this strong dependency to break the pathogen transmission cycle by using systemic insecticides that render the host toxic to the blood-feeding vector. We evaluated the potential of this approach with two novel reservoir species, incriminated for CL expansion in several sites in the Middle East. Specifically, we evaluated: 1) the residuality of the systemic insecticide fipronil in Meriones tristrami (Thomas, 1892) fed on fipronil-treated baits and 2) the treatments' adulticide effect on sand flies that blood fed on treated and untreated M. tristrami and M. crassus (Sundevall, 1842). We fed M. tristrami with food pellets containing 0.1 g/kg fipronil and used gas chromatograph–mass spectrometery analysis and bioassays to examine its residual toxicity to blood-feeding female sand flies. In M. tristrami, fipronil was rapidly metabolized to fipronil sulfone, found in the blood, urine, and feces for ≥31 d after fipronil admission. The survival of sand flies that blood fed on fipronil-treated M. tristrami and M. crassus was significantly reduced for at least 15 and 9 d respectively, after fipronil admission. These results hold promise for the potential contribution of systemic control approaches to CL integrated management strategies against novel CL (due to L. major) outbreaks in Israel and elsewhere.
The strong dependency of some vectors on their host as a source of habitat can be viewed as a weak link in pathogen's transmission cycles using the vertebrate host as a ‘Trojan horse’ to deliver insecticides directly to the vector-host point of contact (hereafter ‘systemic control'). This could, simultaneously, affect the survival of blood-feeding females and coprophagic larvae. Sand-flies, vectors of leishmaniasis worldwide, are often dependent on their bloodmeal host as a source of habitat and may therefore be good candidates for systemic control. In the present study, we field-tested this methodology by baiting Meriones crassus (Sundevall, 1842) (Rodentia:Muridea) with Fipronil-treated food pellets and evaluated its effect on reducing sand-fly emergence rate, in general, and of that of blood-fed females, in particular. We demonstrated 86% reduction in the abundance of female sand-flies that exit burrows of Fipronil-treated jirds, whereas male abundance was unaffected. Furthermore, whereas in control burrows 20% of the females were blood-fed, in treatment burrows no blood-fed females were detected. Sand-fly abundance outside the burrows was not affected by burrow treatment. This highlights the focal specificity of this method: affecting female sand-flies that feed on the reservoir host. This should result in the reduction of the pathogen transmission rate in the vicinity of the treated area by reducing the prevalence of leishmania-infected sand-fly females. These results hold promise for the potential of the systemic control approach in this system. Our next-step goal is to test this methodology at a large-scale cutaneous leishmaniasis control program.
Whitney A. Qualls, Rui-De Xue, Muhammad Farooq, Steven T. Peper, Vindhya Aryaprema, Kai Blore, Richard Weaver, Dena Autry, Asghar Talbalaghi, James Kenar, Steven C. Cermak, Junwei J. Zhu
Thirteen botanical product repellent compounds such as 2-undecanone, capric, lauric, coconut fatty acids (and their methyl ester derivatives), and catnip oil were formulated in either Coppertone or Aroma Land lotions and evaluated against laboratory-reared Aedes aegypti L. (Diptera: Culicidae) mosquitoes. These formulations contained 7–15 wt/wt of the botanical repellent as the major active ingredient either pure or as mixtures. USDA standard repellent test cages were used to determine the complete protection time (CPT) of the different formulated repellents. Two of the evaluated formulations, a 7% capric acid in Coppertone (CPT 2.7 ± 0.6 h) and 7% coconut fatty acids containing carrylic acid, capric acid, and lauric acid in Coppertone (CPT 2.3 ± 2.0 h), provided strong repellency against mosquitoes up to 3 h, which was equivalent to the (N,N-diethyl-m-toluamide) DEET control (CPT 2.7 ± 0.6 h). This work suggests future potential for these botanical product-based repellents as alternatives to commercial DEET-containing products.
Madagascar is a hotspot of biodiversity, but poverty and population growth provoke a high risk of conflict between food security and biodiversity conservation in this tropical country. Numerous vector-borne diseases, including viral infections, affect public health in Madagascar and a continuous expansion of anthropogenically used areas intensifies contact on the human–wildlife interface. However, data on human and animal pathogens in potential insect vectors is limited. Therefore, we conducted a parasitological and virological survey of 785 adult female mosquitoes between March and May 2016 at the Ankarafantsika National Park in northwestern Madagascar. Screening included Alpha-, Phlebo-, and Flaviviridae and the recently described filarial nematode species, Lemurfilaria lemuris. The predominant mosquito genus was Culex (91%), followed by Mansonia (4.1%), Anopheles (3.4%), and Aedes (0.9%). Viral screening revealed no arboviruses, but an insect-specific flavivirus in two Culex sitiens pools. No pools screened positive for the lemur-specific filarial nematode L. lemuris.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere