Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Horseshoe crab (Limulus polyphemus) eggs are a dietary staple of the red knot (Calidris canutus) during its spring stopover on the Delaware Bay. Numbers of knots stopping in Delaware Bay declined in the 1990s concurrent with a decline in horseshoe crabs, leading to the hypothesis that reduced horseshoe crab egg abundance limited the red knot population. Management efforts, including a seasonal harvest moratorium in the Delaware Bay, have been instituted to restore crab populations to levels of sustainable use by multiple users, including migratory birds. Our objective was to evaluate the sufficiency of horseshoe crab eggs in Delaware Bay in May–June 2004 and 2005 for knots to refuel for their migratory flight to the Arctic breeding grounds. We examined egg counts to determine if there were fewer high egg-density sites later than earlier in the day and season, as migrating birds might deplete this resource. We studied foraging rates at red knot locations to determine if foraging probes increased with time of day and season as birds depleted surface eggs by pecking, then began probing for subsurface eggs. Finally, we experimentally tested whether red knots and their competitors depleted horseshoe crab eggs. Crab egg numbers at knot foraging sites did not decline throughout the day or season in 2004. In both years, we found no evidence that knots switched from pecking to probing with increases in time since sunrise or start of the stopover. Egg numbers were similar in exclosed and accessible plots on crab nesting depressions and in areas of open intertidal zone, but were significantly lower in accessible than in exclosed plots in the wrack line. Our results indicate that horseshoe crab eggs in Delaware Bay were sufficient to support the refueling of the present-day stopover population of red knots. If an increase in the availability of crab eggs to foraging birds does not result in an increase in knot numbers, managers must prioritize mitigation of limiting factors at other historically important spring stopovers and on the poorly understood breeding and wintering grounds in addition to the Delaware Bay.
Nebraska's Central Platte River Valley (CPRV) is a major spring-staging area for migratory birds. Over 6 million ducks, geese, and sandhill cranes (Grus canadensis) stage there en route to tundra, boreal forest, and prairie breeding habitats, storing nutrients for migration and reproduction by consuming primarily corn remaining in fields after harvest (hereafter residual corn). In springs 2005–2007, we measured residual corn density in randomly selected harvested cornfields during early (n = 188) and late migration (n = 143) periods. We estimated the mean density of residual corn for the CPRV and examined the influence of agricultural practices (post-harvest field management) and migration period on residual corn density. During the early migration period, residual corn density was greater in idle harvested fields than any other treatments of fields (42%, 48%, 53%, and 92% more than grazed, grazed and mulched, mulched, and tilled fields, respectively). Depletion of residual corn from early to late migration did not differ among post-harvest treatments but was greatest during the year when overall corn density was lowest (2006). Geometric mean early-migration residual corn density for the CPRV in 2005–2007 (42.4 kg/ha; 95% CI = 35.2–51.5 kg/ha) was markedly lower than previously published estimates, indicating that there has been a decrease in abundance of residual corn available to waterfowl during spring staging. Increases in harvest efficiency have been implicated as a cause for decreasing corn densities since the 1970s. However, our data show that post-harvest management of cornfields also can substantially influence the density of residual corn remaining in fields during spring migration. Thus, managers may be able to influence abundance of high-energy foods for spring-staging migratory birds in the CPRV through programs that influence post-harvest management of cornfields.
Millions of ducks, geese, and sandhill cranes (Grus canadensis; hereafter cranes) stop in the Central Platte River Valley (CPRV) of Nebraska to store nutrients for migration and reproduction by consuming corn remaining in fields after harvest. We examined factors that influence use of cornfields by cranes and geese (all mid-continent species combined; e.g., Anser, Chen, and Branta spp.) because it is a key step to efficient conservation planning aimed at ensuring that adequate food resources are available to migratory birds stopping in the CPRV. Distance to night-time roost site, segment of the CPRV (west to east), and agricultural practices (post-harvest treatment of cornfields: idle, grazed, mulched, mulched and grazed, and tilled) were the most important and influential variables in our models for geese and cranes. Probability of cornfield use by geese and cranes decreased with increasing distance from the closest potential roosting site. The use of cornfields by geese increased with the density of corn present there during the early migration period, but field use by cranes appeared not to be influenced by early migration corn density. However, probability of cornfield use by cranes did increase with the amount of wet grassland habitat within 4.8 km of the field. Geese were most likely to use fields that were tilled and least likely to use fields that were mulched and grazed. Cranes were most likely to use fields that were mulched and least likely to use fields that were tilled, but grazing appeared not to influence the likelihood of field use by cranes. Geese were more likely to use cornfields in western segments of the CPRV, but cranes were more likely to use cornfields in eastern segments. Our data suggest that managers could favor crane use of fields and reduce direct competition with geese by reducing fall and spring tilling and increasing mulching. Moreover, crane conservation efforts would be most beneficial if they were focused in the eastern portions of the CPRV and in fields as close as possible to both known roosting and large amounts of wet grassland habitats.
The increase of double-crested cormorant (Phalacrocorax auritus; hereafter, cormorant) populations during the last 2 decades has impacted many stakeholder groups. The negative effects of nesting cormorants on trees and other vegetation have motivated private organizations and government agencies to manage nesting colonies and reduce their impacts to private property and public resources. Management-induced reproductive failure has been shown to influence cormorant inter-annual nesting colony fidelity, but not complete abandonment from a nesting colony site. We attached very high frequency (VHF) transmitters and Global Positioning System (GPS) transmitters to nesting cormorants to monitor their movement response on a managed site (Young Island, VT [YI]) and an unmanaged site (Four Brothers Islands, NY [FB]). Additionally, we monitored these sites to determine the influence of management activities on subsequent-year colonization. On YI, management consisted of egg-oiling all cormorant nests (some nests had been oiled in previous years) and culling approximately 20% of adults. Annual dispersal rates did not differ between managed and unmanaged sites, but a nesting period interaction occurred with greater dispersal on the managed site following the incubation period. After 4 years of both egg oiling and culling, cormorant nesting on YI declined to zero. Simultaneously, cormorant numbers increased on the nearby unmanaged FB. We propose either the cumulative effect of partial or complete reproductive failure (8 yr) or simply the inclusion of adult culling (4 yr) caused the abandonment. From a colony-specific management perspective, the rapid decline was beneficial to the goal of restoring the vegetative community on YI. The effects of adult culling at nesting colonies, prior-year reproductive failure caused by egg oiling, or the combination of these factors may be required for complete and rapid nesting site abandonment. The use of culling adult breeders reduced nesting and likely limits the cost and logistics of control and allows more rapid initiation of mitigation measures and island habitat restoration.
Long-term population monitoring is the cornerstone of animal conservation and management. The accuracy and precision of models developed using monitoring data can be influenced by the protocols guiding data collection. The greater sage-grouse (Centrocercus urophasianus) is a species of concern that has been monitored over decades, primarily, by counting the number of males that attend lek (breeding) sites. These lek count data have been used to assess long-term population trends and for multiple mechanistic studies. However, some studies have questioned the efficacy of lek counts to accurately identify population trends. In response, monitoring protocols were changed to have a goal of counting lek sites multiple times within a season. We assessed the influence of this change in monitoring protocols on model accuracy and precision applying generalized additive models to describe trends over time. We found that at large spatial scales including >50 leks, the absence of repeated counts within a year did not significantly alter population trend estimates or interpretation. Increasing sample size decreased the model confidence intervals. We developed a population trend model for Wyoming greater sage-grouse from 1965 to 2008, identifying significant changes in the population indices and capturing the cyclic nature of this species. Most sage-grouse declines in Wyoming occurred between 1965 and the 1990s and lek count numbers generally increased from the mid-1990s to 2008. Our results validate the combination of monitoring data collected under different protocols in past and future studies—provided those studies are addressing large-scale questions. We suggest that a larger sample of individual leks is preferable to multiple counts of a smaller sample of leks.
As natural environments become increasingly modified by humans, land managers should devise plans to protect sensitive species from human activities that disturb these species. We explored behavioral responses of nesting ferruginous hawks (Buteo regalis) to an approaching human in areas where the level of human activity on the landscaped varied. Contrary to other reports, hawks were aggressive in nest defense and female hawks defended nests more aggressively than male hawks. Adult hawks decreased nestdefense intensity as nestling age increased but increased intensity with consecutive human visits to the nest. Flushing distance was considerably higher than that documented in other studies and was negatively related to degree of urbanization. We found that a distance of 650 m prevented 95% of nest-attending ferruginous hawks from flushing in response to human intruders; thus we recommend establishing a spatial buffer of this distance or greater to minimize adverse effects of human activities on hawks nesting in New Mexico.
One of the main populations of the Florida scrub-jay (Aphelocoma coerulescens), a federally threatened species, occurs on Ocala National Forest, Florida. We determined the nest daily survival rate (DSR) of 474 nests of Florida scrub-jays in stands subject to sand pine reforestation management after timber harvesting or wildfire on Ocala National Forest. We used the information-theoretic approach with logistic-exposure modeling to determine the most likely models to account for DSR for the incubation and nestling stages separately. The models consisted of 4 components (temporal, management, habitat, and helpers) with each consisting of one to several specific variables. In the incubation stage all the best models included the temporal component alone or in concert with the habitat, helpers, or habitat and helpers components. Model averaging in the incubation stage indicated support for the year and day × year in the temporal component and stand age in the habitat component. In the nestling stage, top models all included the temporal component alone or with helpers or habitat, helpers, and the interaction of habitat and helpers. Model averaging in the nestling stage showed support for the year, nest age, and to a lesser extent day in the temporal component and helpers. The management component, which consisted of no site preparation, wildfire burn, post-harvest burn, chop and seed, or seed only, had little influence on nest survival for the incubation or nestling stages. However, we identified several other management factors that may increase Florida scrub-jay populations despite having no effect on DSR. First, the proportion of Florida scrub-jay nests was significantly higher than expected in burned habitat based on habitat availability, indicating a potential preferred nesting habitat conducive to population growth. Second, incubation stage DSR with respect to stand age (habitat component) declined to stand age 10 yr and then began to increase, which may be attributed to the higher bird population in the prime habitat in the middle stand ages. The denser population may result in more competition for resources, and possibly may attract more predators, resulting in a lower DSR. Thus, although DSR may be lower at the mid-stand ages, the overall population may actually be optimal. Therefore, to increase the Florida scrub-jay population on Ocala National Forest, we recommend maintaining a mosaic of stands ≤20 yr of age and emphasizing natural reseeding and site preparation via burning.
Prescribed fire is one tool for restoring fire-suppressed forests, but application of fire during spring coincides with breeding and arrival of migrant birds. We examined effects of low-severity prescribed fires on counts of birds in a managed forest in the Sierra Nevada of California immediately, 1 year, and 3–6 years after fire was applied in spring. Of 26 species analyzed, counts of 3 species increased after fire (Pacificslope flycatcher [Empidonax difficilis], brown creeper [Certhia americana], and American robin [Turdus migratorius]), and 6 species decreased after fire (Anna's hummingbird [Calypte anna], Hutton's vireo [Vireo huttoni], warbling vireo [Vireo gilvus], golden-crowned kinglet [Regulus satrapa], Nashville warbler [Vermivora ruficapilla], hermit warbler [Dendroica occidentalis]). Black-throated gray warbler (Dendroica nigrescens) increased in the first year following fire but decreased 3–6 years after fire. When grouped into guilds, habitat association and foraging guild best explained responses to fire, with the greatest changes occurring for oak-associated species (negative), riparian-associated species (positive), aerial foragers (positive), and bark foragers (positive). Lastly, when we compared our counts to those collected during the 1910s, changes were consistent with those predicted from fire suppression and species' affinity for burned forests, suggesting that results from contemporary fire studies should be interpreted within an ecological context that includes effects of fire suppression. We found that low-severity prescribed fires applied in spring served to drive the bird community towards pre-suppression conditions.
We evaluated habitat suitability and nest survival of breeding white-headed woodpeckers (Picoides albolarvatus) in unburned forests of central Oregon, USA. Daily nest-survival rate was positively related to maximum daily temperature during the nest interval and to density of large-diameter trees surrounding the nest tree. We developed a niche-based habitat suitability model (partitioned Mahalanobis distance) for nesting white-headed woodpeckers using remotely sensed data. Along with low elevation, high density of large trees, and low slope, our habitat suitability model suggested that interspersion-juxtaposition of low- and high-canopy cover ponderosa pine (Pinus ponderosa) patches was important for nest-site suitability. Cross-validation suggested the model performed adequately for management planning at a scale >1 ha. Evaluation of mapped habitat suitability index (HSI) suggested that the maximum predictive gain (HSI = 0.36), where the number of nest locations are maximized in the smallest proportion of the modeled landscape, provided an objective initial threshold for identification of suitable habitat. However, managers can choose the threshold HSI most appropriate for their purposes (e.g., locating regions of low-moderate suitability that have potential for habitat restoration). Consequently, our habitat suitability model may be useful for managing dry coniferous forests for white-headed woodpeckers in central Oregon; however, model validation is necessary before our model could be applied to other locations.
Roadside point counts are often used to estimate trends of bird populations. The use of aural counts of birds without adjustment for detection probability, however, can lead to incorrect population trend estimates. We compared precision of estimates of density and detectability of whistling northern bobwhites (Colinus virginianus) using distance sampling, independent double-observer, and removal methods from roadside surveys. Two observers independently recorded each whistling bird heard, distance from the observer, and time of first detection at 362 call-count stops in Ohio. We examined models that included covariates for year and observer effects for each method and distance from observer effects for the double-observer and removal methods using Akaike's Information Criterion (AIC). The best model of detectability from distance sampling included observer and year effects. The best models from the removal and double-observer techniques included observer and distance effects. All 3 methods provided precise estimates of detection probability (CV = 2.4–4.4%) with a range of detectability of 0.44–0.95 for a 6-min survey. Density estimates from double-observer surveys had the lowest coefficient of variation (2005 = 3.2%, 2006 = 1.7%), but the removal method also provided precise estimates of density (2005 CV = 3.4%, 2006 CV = 4.8%), and density estimates from distance sampling were less precise (2005 CV = 9.6%, 2006 CV = 7.9%). Assumptions of distance sampling were violated in our study because probability of detecting bobwhites near the observer was <1 or the roadside survey points were not randomly distributed with respect to the birds. Distances also were not consistently recorded by individual members of observer pairs. Although double-observer surveys provided more precise estimates, we recommend using the removal method to estimate detectability and abundance of bobwhites. The removal method provided precise estimates of density and detection probability and requires half the personnel time as double-observer surveys. Furthermore, the likelihood of meeting model assumptions is higher for the removal survey than with independent double-observers.
Golf courses ostensibly offer green space in urbanized areas, but it is unclear how suitable these human-modified habitats are for wildlife populations. Golf courses are home to a variety of wildlife, but in particular they have been the focus of research on avian responses to urbanization. Although numerous reproductive and diversity studies have been conducted on birds of golf courses, no research exists on postfledging survival in this created landscape. In 2008 and 2009, we estimated survival of eastern bluebird (Sialia sialis) fledglings using radio telemetry on golf course and other developed sites in Williamsburg, Virginia. We used nest survival models in Program MARK set in an information theoretic framework to assess whether the golf course habitat predicted mortality along with other previously studied variables, such as fledgling age, year, site, body condition, fledging date, and transmitter weight. We found no evidence that inhabiting a golf course increased mortality during the fledgling period, but we did find support for both fledgling age and fledging date as predictors of survival. Mortality decreased for older fledglings and those that fledged later in the season. Cause-specific postfledging survival rates did not differ among sites. Fledgling bluebirds did, however, move into habitat that was significantly more forested and less grassy than their natal habitat. For managers of wildlife on golf courses and other urbanized sites, our study is the first to show that placing nest boxes in manicured habitat may attract birds to areas without suitable habitat for fledglings.
Acoustic surveys are widely used for describing bat occurrence and activity patterns and are increasingly important for addressing concerns for habitat management, wind energy, and disease on bat populations. Designing these surveys presents unique challenges, particularly when a probabilistic sample is required for drawing inference to unsampled areas. Sampling frame errors and other logistical constraints often require survey sites to be dropped from the sample and new sites added. Maintaining spatial balance and representativeness of the sample when these changes are made can be problematic. Spatially balanced sampling designs recently developed to support aquatic surveys along rivers provide solutions to a number of practical challenges faced by bat researchers and allow for sample site additions and deletions, support unequal-probability selection of sites, and provide an approximately unbiased local neighborhood-weighted variance estimator that is efficient for spatially structured populations such as is typical for bats. We implemented a spatially balanced design to survey canyon bat (Parastrellus hesperus) activity along a stream network. The spatially balanced design accommodated typical logistical challenges and yielded a 25% smaller estimated standard error for the mean activity level than the usual simple random sampling estimator. Spatially balanced designs have broad application to bat research and monitoring programs and will improve studies relying on model-based inference (e.g., occupancy models) by providing flexibility and protection against violations of the independence assumption, even if design-based estimators are not used. Our approach is scalable and can be used for pre- and post-construction surveys along wind turbine arrays and for regional monitoring programs.
Studying migratory behavior of bats is challenging. Thus, most information regarding their migratory behavior is anecdotal. Recently, however, fatalities of migratory bats at some wind energy facilities across North America have provided the opportunity and impetus to study bat migration at fine spatial and temporal scales. Using acoustic monitoring and carcass searches, we examined temporal and spatial variation in activity levels and fatality rates of bats at a wind energy facility in southern Alberta, Canada. Our goals were to better understand the influence of weather variables and turbine location on the activity and fatality of hoary bats (Lasiurus cinereus) and silver-haired bats (Lasionycteris noctivagans), and to use that understanding to predict variation in fatality rates at wind energy facilities and recommend measures to reduce fatalities. Overall activity of migratory bats and of silver-haired bats increased in low wind speeds and warm ambient temperatures, and was reduced when the wind was from the North or Northeast, whereas hoary bat activity increased with falling barometric pressure. Fatalities of migratory bats in general increased with increased activity of migratory bats, increased moon illumination, and falling barometric pressure and were influenced by the interaction between barometric pressure change and activity. Fatalities of silver-haired bats increased with increased activity, moon illumination, and winds from the south-east. Hoary bat fatalities increased with falling barometric pressure. Our results indicate that both the activity and fatality of migratory bats are affected by weather variables, but that species differ in their responses to environmental conditions. Spatially, fatalities were not influenced by the position of turbines within a turbine row, but were influenced by the location of turbines within the facility. Our findings have implications for our understanding of bat migration and efforts to reduce fatalities at wind energy facilities. To maximize the reduction of bat fatalities, operators of wind energy facilities could incorporate migratory bats' response to environmental variables, such as barometric pressure and fraction of moon illuminated, into their existing mitigation strategies.
Male and female predators are often assumed to have the same effects on prey. Because of differences in body size and behavior, however, male and female predators may use different species, sexes, and ages of prey, which could have important implications for wildlife conservation and management. We tested for differential prey use by male and female cougars (Puma concolor) from 2003 to 2008 in Washington State. We predicted that male cougars would kill a greater proportion of larger and older prey (i.e., adult elk [Cervus elaphus]), whereas females would kill smaller and younger prey (i.e., elk calves, mule deer [Odocoileus hemionus]). We marked cougars with Global Positioning System (GPS) radio collars and investigated 436 predation sites. We located prey remains at 345 sites from 9 male and 9 female cougars. We detected 184 mule deer, 142 elk, and 17 remains from 4 other species. We used log-linear modeling to detect differences in species and age of prey killed among cougar reproductive classes. Solitary females and females with dependent offspring killed more mule deer than elk (143 vs. 83, P < 0.01), whereas males killed more elk than mule deer (59 vs. 41, P < 0.01). Proportionately, males killed 4 times more adult elk than did females (24% vs. 6% of kills) and females killed 2 times more adult mule deer than did males (26% vs. 15% of kills). Managers should consider the effects of sex of predator in conservation and management of ungulates, particularly when managing for sensitive species.
Human—wildlife interactions are often associated with a myriad of stakeholder groups, intense political scrutiny, and limited biological data, creating complex decision-making situations for wildlife management agencies. Limited research exists on the development and testing of tools (e.g., models to predict the spatial distribution of interactions) to reduce human—black bear (Ursus americanus) interactions (HBI). Available models predicting spatial distribution of HBI are usually developed at scales too large to predict across urban areas, are rarely tested against independent data sets, and usually do not incorporate both landscape and anthropogenic variables. Our objective was to develop a predictive modeling tool that could identify areas of high conflict potential across urban landscapes. We compared locations of HBI in Missoula, MT, recorded by Montana Fish, Wildlife & Parks from 2003 to 2008, to random locations using logistic regression. The final model discriminated the relative spatial probability of HBI within Missoula well, and a second study area moderately. The probability of HBI in Missoula increased when residents lived close to forested patches and major rivers and streams and in intermediate housing densities (approx. 6.59 houses/ ha). Our results provide a wildlife management tool and a repeatable statistical framework that predicts spatial distribution of HBI using only a small set of variables.
Abundance estimates for black bears (Ursus americanus) are important for effective management. Recently, DNA technology has resulted in widespread use of noninvasive, genetic capture—mark—recapture (CMR) approaches to estimate populations. Few studies have compared the genetic CMR methods to other estimation methods. We used genetic CMR to estimate the bear population at 2 study sites in northern New Hampshire (Pittsburg and Milan) in 2 consecutive years. We compared these estimates to those derived from traditional methods used by the New Hampshire Fish and Game Department (NHFG) using hunter harvest and mortality data. Density estimates produced with genetic CMR methods were similar both years and were comparable to those derived from traditional methods. In 2006, the estimated number of bears in Pittsburg was 79 (95% CI = 60–98) corresponding to a density of 15–24 (95% CI) bears/ 100 km2; the 2007 estimate was 83 (95% CI = 67–99; density = 16–24 bears/100 km2). In 2006, the estimated number of bears in Milan was 95 (95% CI = 74–117; density = 16–25 bears/100 km2); the 2007 estimate was 96 (95% CI = 77–114; density = 17–25 bears/100 km2). We found that genetic CMR methods were able to identify demographic variation at a local scale, including a strongly skewed sex ratio (2 M:1 F) in the Milan population. Genetic CMR is a useful tool for wildlife managers to monitor populations of local concern, where abundance or demographic characteristics may deviate from regional estimates. Future monitoring of the Milan population with genetic CMR is recommended to determine if the sex ratio bias continues, possibly warranting a change in local harvest regimes.
We studied reproduction of American black bears (Ursus americanas) in western Virginia from 1994 to 2003. We handled 326 ≥2-year-old female black bears 672 times during summer trapping and followed 176 of these individuals through 424 winter den seasons. We examined 183 litters consisting of 455 cubs. Primiparity occurred at mean and modal ages of 3.8 and 3 years, respectively. Composite mean litter size was 2.49 (SE = 0.06) cubs/litter; 3- and 4-year-olds had smaller litters than older bears. We tracked reproductive synchrony using 5 indices and documented a resetting of this synchrony, likely in response to hard-mast failure. The amplitude of oscillations in synchrony indices dampened through time after the synchronizing events. Documentation and quantification of relationships between nutrient availability, reproduction and population dynamics can be used to inform population modeling efforts and more accurately forecast harvest.
Previous research from 2001 to 2006 on an experimentally released elk (Cervus elaphus) population at Great Smoky Mountains National Park (GSMNP or Park) indicated that calf recruitment (i.e., calves reaching 1 yr of age per adult female elk) was low (0.306, total SE = 0.090) resulting in low or negative population growth (γ = 0.996, 95% CI = 0.945–1.047). Black bear (Ursus americanus) predation was the primary calf mortality factor. From 2006 to 2008, we trapped and relocated 49 bears (30 of which were radiocollared) from the primary calving areas in the Park and radiomonitored 67 (28 M:39 F) adult elk and 42 calves to compare vital rates and population growth with the earlier study. A model with annual calf recruitment rate correlating with the number of bears relocated each year was supported (ΔAICC = 0.000; β = 0.070, 95% CI = 0.028–0.112) and a model with annual calf recruitment differing from before to during bear relocation revealed an increase to 0.544 (total SE = 0.098; β = -1.092, 95% CI = -1.180 to -0.375). Using vital rates and estimates of process standard errors observed during our study, 25-yr simulations maintained a mean positive growth rate in 100% of the stochastic trials with γ averaging 1.118 (95% CI = 1.096–1.140), an increase compared with rates before bear relocation. A life table response experiment revealed that increases in population growth were mostly (67.1%) due to changes in calf recruitment. We speculate that behavioral adaptation of the elk since release also contributed to the observed increases in recruitment and population growth. Our results suggest that managers interested in elk reintroduction within bear range should consider bear relocation as a temporary means of increasing calf recruitment.
Resource utilization function (RUF) models permit evaluation of potential habitat for endangered species; ideally such models should be evaluated before use in management decision-making. We evaluated the predictive capabilities of a previously developed black-footed ferret (Mustela nigripes) RUF. Using the population-level RUF, generated from ferret observations at an adjacent yet distinct colony, we predicted the distribution of ferrets within a black-tailed prairie dog (Cynomys ludovicianus) colony in the Conata Basin, South Dakota, USA. We evaluated model performance, using data collected during postbreeding spotlight surveys (2007–2008) by assessing model agreement via weighted compositional analysis and count-metrics. Compositional analysis of home range use and colony-level availability, and core area use and home range availability, demonstrated ferret selection of the predicted Very high and High occurrence categories in 2007 and 2008. Simple count-metrics corroborated these findings and suggested selection of the Very high category in 2007 and the Very high and High categories in 2008. Collectively, these results suggested that the RUF was useful in predicting occurrence and intensity of space use of ferrets at our study site, the 2 objectives of the RUF. Application of this validated RUF would increase the resolution of habitat evaluations, permitting prediction of the distribution of ferrets within distinct colonies. Additional model evaluation at other sites, on other black-tailed prairie dog colonies of varying resource configuration and size, would increase understanding of influences upon model performance and the general utility of the RUF.
Ecosystem management requires an understanding of how landscapes vary in space and time, how this variation can be affected by management decisions or stochastic events, and the potential consequences for species. Landscape trajectory analysis, coupled with a basic knowledge of species habitat selection, offers a straightforward approach to ecological risk analysis and can be used to project the effects of management decisions on species of concern. The fisher (Martes pennanti) occurs primarily in late-successional forests which, in the Sierra Nevada mountains, are susceptible to high-intensity wildfire. Understanding the effects of fuels treatments and fire on the distribution of fisher habitat is a critical conservation concern. We assumed that the more a treated landscape resembled occupied female fisher home ranges, the more likely it was to be occupied by a female and therefore the lower the risk to the population. Thus, we characterized important vegetation attributes within the home ranges of 16 female fishers and used the distribution of these attributes as a baseline against which the effects of forest management options could be compared. We used principal components analysis to identify the major axes defining occupied female fisher home ranges and these, in addition to select univariate metrics, became our reference for evaluating the effects of landscape change. We demonstrated the approach at two management units on the Sierra National Forest by simulating the effects of both no action and forest thinning, with and without an unplanned fire, on vegetation characteristics over a 45-yr period. Under the no action scenario, landscapes remained similar to reference conditions for approximately 30-yr until forest succession resulted in a loss of landscape heterogeneity. Comparatively, fuel treatment resulted in the reduction of certain forest elements below those found in female fisher home ranges yet little overall change in habitat suitability. Adding a wildfire to both scenarios resulted in divergence from reference conditions, though in the no action scenario the divergence was 4 × greater and the landscape did not recover within the 45-yr timeframe. These examples demonstrate that combining the results of forest growth and disturbance modeling with habitat selection data may be used to quantify the potential effects of vegetation management activities on wildlife habitat.
We used radio-telemetry and collar-mounted activity sensors to compare home range size, habitat use, and activity patterns of owned and unowned free-roaming cats on the outskirts of Champaign Urbana, Illinois, USA. Owned cats (3 M, 8 F) had smaller home ranges than unowned cats (6 M, 10 F), but we failed to detect consistent differences in home range size between the sexes or among seasons. Home ranges of unowned cats included more grassland and urban area than predicted based on availability in all seasons, and farmsteads were selected in fall and winter. Within home ranges, unowned cats shifted their use of habitats among seasons in ways that likely reflected prey availability, predation risk, and environmental stress, whereas habitat use within home ranges by owned cats did not differ from random. Unowned cats were more nocturnal and showed higher overall levels of activity than owned cats. Space use and behavioral differences between owned and unowned cats supported the hypothesis that the care a cat owner provides influences the impact a cat has on its environment, information that is important for making decisions on controlling cat populations.
Reliable estimates of presence or absence of a species can provide substantial information on management questions related to distribution and habitat use but should incorporate the probability of detection to reduce bias. We surveyed for the endangered Lower Keys marsh rabbit (Sylvilagus palustris hefneri) in habitat patches on 5 Florida Key islands, USA, to estimate occupancy and detection probabilities. We derived detection probabilities using spatial replication of plots and evaluated hypotheses that patch location (coastal or interior) and patch size influence occupancy and detection. Results demonstrate that detection probability, given rabbits were present, was <0.5 and suggest that naïve estimates (i.e., estimates without consideration of imperfect detection) of patch occupancy are negatively biased. We found that patch size and location influenced probability of occupancy but not detection. Our findings will be used by Refuge managers to evaluate population trends of Lower Keys marsh rabbits from historical data and to guide management decisions for species recovery. The sampling and analytical methods we used may be useful for researchers and managers of other endangered lagomorphs and cryptic or fossorial animals occupying diverse habitats.
We evaluated the precision of age estimates produced by cementum annuli analysis (CAA) of blind-duplicate specimens taken from 994 southern mule deer (Odocoileus hemionus) collected over 15 years. We found that the mean annual proportion of unreliably aged incisor pairs was greater for females (0.48, SD = 0.13) than for males (0.22, SD = 0.07). Most of the 308 unreliably aged tooth pairs disagreed by only 1 year. Sex, precipitation, and certainty codes assigned by Matson's Lab to the age estimates were the best predictors for agreement of estimated ages within incisor pairs. Our estimated overall age error rate of CAA (17%) was >2 times as large as estimated error rates from Montana and South Dakota, but less than half of error rates estimated for Mississippi and south Texas. Knowing the error rate of age estimates from a specific deer population allows wildlife managers to perform tasks requiring specific age class information such as monitoring the harvest rate of older female deer in a hunted population or performing population reconstruction.
Michael J. Lavelle, Kurt C. Vercauteren, Trevor J. Hefley, Gregory E. Phillips, Scott E. Hygnstrom, David B. Long, Justin W. Fischer, Seth R. Swafford, Tyler A. Campbell
Populations of feral swine (Sus scrofa) are estimated to include >2 million animals in the state of Texas, USA, alone. Feral swine damage to property, crops, and livestock exceeds $50 million annually. These figures do not include the increased risks and costs associated with the potential for feral swine to spread disease to domestic livestock. Thus, effective bio-security measures will be needed to quickly isolate affected feral swine populations during disease outbreaks. We evaluated enclosures built of 0.86-m-tall traditional hog panels for containing feral swine during 35 trials, each involving 6 recently caught animals exposed to increasing levels of motivation. During trials, fences were 97% successful when enclosures were entered by humans for maintenance purposes; 83% effective when pursued by walking humans discharging paintball projectors; and in limited testing, 100% successful when pursued and removed by gunners in a helicopter. In addition to being effective in containing feral swine, enclosures constructed of hog panels required simple hand tools, took <5 min/m to erect, and were inexpensive ($5.73/m excluding labor) relative to other fencing options. As such, hog-panel fences are suitable for use by state and federal agencies for rapid deployment in disease response situations, but also exhibit utility for general control of other types of damage associated with feral swine.
We compared the effectiveness and cost of distribution surveys using livetrapping to those using detection dog-handler teams for a cryptic rodent (Franklin's ground squirrel [Poliocitellus franklinii]). We livetrapped at 62 sites in Illinois, Indiana, Iowa, Missouri, and Wisconsin for Franklin's ground squirrels in 2007–2009 and surveyed 40 of those sites using detection dogs in 2009. Independent surveys of a site by 2 dog-handler teams took <1 hr and yielded detection rates comparable to 2 daily livetrapping surveys (detection rate = 83–84%). However, false presences are a potential problem when detection dogs are trained to scent of a species that leaves little visual sign to confirm its presence. Surveys by 2 dog-handler teams cost >2 daily livetrapping surveys conducted by 2 technicians but more and larger sites can be surveyed by dog-handler teams in a shorter time. For surveys covering large spatial scales or when time is a limiting factor, number of false presences, and study costs can be reduced by employing a 2-stage survey protocol in which livetrapping is conducted only at sites where detection dog surveys indicate presence. We conclude a 2-stage strategy could be used effectively in large-scale surveys for a variety of rare and cryptic species.
Capturing sufficient numbers of marsh birds for telemetry studies is difficult due to the secretive nature and inaccessible habitat of the birds. We experimented with thermal imaging technology to locate clapper rails and subsequently capture them from an airboat in South Carolina tidal marshes. This method produced a capture rate of up to 19.2 rails/hr, which exceeded other capture rates in the literature. We believe this technique will improve capture efficiency for clapper rails, and potentially other secretive marsh birds, enhancing opportunities for studying these important species.
The lack of variance estimates constrain the utility of abundance indices calculated from camera-trap data. We adapted a General Index model, which allows variance estimation, to analyze camera-trap observations of feral pigs (Sus serofa) for population monitoring in a tropical rainforest. We tested whether the index would respond to population manipulation, and found that it decreased by 57% following removal of 24 pigs and remained low in the following period. Our method is useful for monitoring other large animals in difficult landscapes, and the model can be used to enhance the value of existing data sets.
Measurement error of explanatory variables used in sightability models can result in biased population estimates and associated measures of precision. We developed a Monte Carlo simulation procedure that can be implemented within the sightability model framework when measurement error is present. Additionally, we developed simulation and sample survey methods, for determining the optimal allocation of survey effort to maximize precision of population estimates for a fixed survey cost, when a complete survey of a study area is not feasible. We used data from aerial surveys of elk during 2004–2006 in Michigan to demonstrate the application of these techniques. By accounting for measurement error and applying appropriate survey design practices, managers employing sightability models may be able to generate more accurate and cost-effective population estimates and accompanying measures of precision than is possible if these techniques are ignored.
Novel populations pose unusual challenges for wildlife managers because knowledge regarding the source of these populations is essential to develop sound management approaches. One example that illustrates the complexity of this issue is the small population of red squirrels (Tamiasciurus hudsonicus) identified in northeastern Illinois in the 1970s. To elucidate the source of the red squirrel population in Illinois, we examined both contemporary and less recent patterns of genetic structure using nuclear microsatellite loci and mitochondrial DNA. Analyses revealed the Illinois subpopulation was primarily comprised of descendents of immigrants from Indiana, but there was also evidence of a translocation of squirrels from Minnesota. We recommend continued protection for the red squirrel in Illinois due to its restricted geographic range, small population size, and status as a native population.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere