Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
To assess the utility of expressed sequence tag (EST) sequencing as a method of gene discovery in the ciliated protozoan Tetrahymena thermophila, we have sequenced either the 5′ or 3′ ends of 157 clones chosen at random from two cDNA libraries constructed from the mRNA of vegetatively growing cultures. Of 116 total non-redundant clones, 8.6% represented genes previously cloned in Tetrahymena. Fifty-two percent had significant identity to genes from other organisms represented in GenBank, of which 92% matched human proteins. Intriguing matches include an opioid-regulated protein, a glutamate-binding protein for an NMDA-receptor, and a stem-cell maintenance protein. Eleven-percent of the non-Tetrahymena specific matches were to genes present in humans and other mammals but not found in other model unicellular eukaryotes, including the completely sequenced Saccharomyces cerevisiae. Our data reinforce the fact that Tetrahymena is an excellent unicellular model system for studying many aspects of animal biology and is poised to become an important model system for genome-scale gene discovery and functional analysis.
The Testaceafilosia includes amoebae with filopodia and with a proteinaceous, agglutinated or siliceous test. To explore the deeper phylogeny of this group, we sequenced the small subunit ribosomal RNA coding region of 13 species, including the first sequence of an amoeba with an agglutinated test, Pseudodifflugia sp. Phylogenetic analyses using maximum parsimony and maximum likelihood methods as well as neighbor joining method yielded the following results: the order Euglyphida forms a monophyletic lineage with the sarcomonads as sister group. The next related taxa are the Chlorarachnea and the unidentified filose strain N-Por. In agreement with the previous studies the Phytomyxea branch off at the base of this lineage. The Monadofilosa (Testaceafilosia and Sarcomonadea) appear monophyletic. The Testaceafilosia are polyphyletic, because Pseudodifflugia sp. is positioned as the sister taxon to the sarcomonads. Within the order Euglyphida Paulinella branches off first, together with Cyphoderia followed by Tracheleuglypha. In maximum likelihood and neighbor joining analyses, the genus Euglypha is monophyletic. The branching pattern within the order Euglyphida reflects the evolution of shell morphology from simple to complex built test.
Ichthyobodo necator is an important fish ectoparasite with a broad host and ecological range. A novel method, involving the use of an anesthetic, allowed the collection of large numbers of parasites from the skin and gills of hybrid striped bass (Morone saxatilis male × M. chrysops female). Genomic DNA from these samples was used to amplify and clone the 18S rRNA gene. The 18S rRNA gene was similarly cloned from Bodo caudatus, Bodo edax, Bodo saltans, an unidentified Bodo species, and Dimastigella trypaniformis. The resulting sequences were aligned with other representative kinetoplastid species using pileup and similarities in secondary structure. Phylogenetic relationships within the suborder Bodonina and representatives of the suborder Trypanosomatina were determined using maximum-likelihood statistics. The phylogenetic analyses strongly supported the order Kinetoplastida as a monophyletic assemblage consisting of at least two major lineages. One lineage consisted exclusively of I. necator, indicating that it may represent a new suborder. The second lineage consisted of all other kinetoplastid species. This second lineage appeared to contain at least 8 bodonine sublineages, none of which correlated with currently recognized families. For three sublineages, there was a close correspondence between the 18S phylogeny and the classical taxonomy of Dimastigella, Rhynchobodo, and Rhynchomonas. In contrast, Bodo and Cryptobia were polyphyletic, containing species in two or more sublineages that may represent separate genera.
The plasmodium of Physarum polycephalum grows without cytokinesis and shows an active cytoplasmic streaming under wet and nutritious conditions. It can undergo reversible differentiation into several types of dormancy to survive in adverse environments. Temperature change or osmotic stress leads to cytoplasmic division of the plasmodium into cells containing one or more nuclei: these form a macrocyst, the spherule. Desiccation also induces cell division of the plasmodium followed by formation of a sclerotium, a dormant body resistant to dry stress. More than half of the actin in a sclerotium is phosphorylated at a single site, threonine 203, resulting in loss of its ability to polymerize into actin filaments. In the present study, actin phosphorylation was found in the sclerotium but not in either the plasmodium or in the spherule. This result suggests that phosphorylation of sclerotium actin may be related to the mechanism associated with desiccation resistance rather than morphological changes through cell compartmentalization in the macrocyst formation. Moreover, dephosphorylation of the phosphorylated form of sclerotium actin began within 5 min after addition of water. Dephosphorylation was not affected by sucrose and sorbitol sugars, but was inhibited by ammonium bicarbonate, ammonium phosphate, sodium phosphate, NaCl, and KCl in a dose-dependent manner. On the other hand, in germination of the sclerotium there was measurable sensitivity to both carbohydrates and salts. Actin dephosphorylation seems to be one of the important processes in the early phase of sclerotium germination.
The cyst wall of the parasitic protozoan, Giardia intestinalis, is composed of a polymer of N-acetylgalactosamine, the precursor of which is synthesized by an inducible enzyme pathway. The first enzyme in this pathway, glucosamine 6-phosphate isomerase, is transcriptionally regulated. During encystment and in mature cysts this isomerase appears to be modified by ubiquitin attachment. Thus, it might be targeted for destruction by an ubiquitin-mediated pathway, suggesting that glucosamine 6-phosphate isomerase expression is tightly regulated.
The hexamitid flagellate Spironucleus vortens, previously reported from Pterophyllum scalare from Florida, was found in the intestine of Leuciscus idus in Norway. The flagellate was cultivated and studied by scanning and transmission electron microscopy. Identification was based on a suite of ultrastructural features unique for S. vortens: compound lateral ridges, a swirled posterior end, and a distinctive microtubular cytoskeleton. Microfibrillar structures with a periodicity of 0.13 μm in the right peripheral part of the compound lateral ridges were shown to be responsible for the distinctive rope-like appearance of the peripheral ridge seen in scanning electron micrographs, and not previously reported for S. vortens. The present results show a wide geographic distribution and a wide temperature tolerance for S. vortens. The flagellate was successfully cultivated at 5 °C and 15 °C, having previously been cultivated between 2–34 °C. Spironucleus vortens is believed to be endemic in Norwegian waters, but an introduction hypothesis is also discussed. The similarity is striking between S. vortens and S. elegans, previously described from amphibians and fish in Europe, and the possibility of conspecificity is believed to be high.
Four species of adult herbivorous surgeonfishes (Family Acanthuridae) were collected from the remote South-Pacific island system of Tuvalu. Their intestinal contents were examined, and of four populations of ciliated protists, two new species were discovered and are described. Ciliates were examined after protargol staining and, in some cases, scanning electron microscopy. Members of each population were examined and 10 characters measured for the balantidia, and 13 for the paracichlidotherids. A new Balantidium is described which has an unusually large dextr-oral field of cilia. A new species of Paracichlidotherus was discovered which has a macronucleus significantly smaller and well anteriad the cytoplasmic portion of the oral polykinetids relative to the type species.
A number of reports suggest that the sexually transmitted pathogen of cattle, Tritrichomonas foetus, and a gastrointestinal commensal of pigs, Tritrichomonas suis, are very similar and may be co-specific. A conclusive review of the taxonomic and nomenclatural status of these species has not been presented so far. Toward this end, we reexamined and compared porcine and bovine trichomonads with regard to their morphology, pathogenic potential, and DNA polymorphism. Using light and electron microscopy, no distinguishing features between T. foetus and T. suis strains were found in size, general morphology, and karyomastigont structure. Both bovine and porcine trichomonads showed pathogenic potential in the subcutaneous mouse assays and did not separate into distinct groups according to strain virulence. Three DNA fingerprinting methods (i.e. RFLP, RAPD, and PCR-based analysis of variable-length DNA repeats) that produce species-specific DNA fragment patterns did not distinguish between the bovine and porcine strains. Sequencing of a variable 502-bp DNA fragment as well as comparison of 16S rRNA gene sequences did not reveal species-specific differences between the cattle and porcine strains. Therefore, we conclude that T. foetus and T. suis belong to the same species. To prevent confusion that may arise from T. foetus–T. suis synonymy, we propose to suppress the older name suis and maintain its accustomed junior synonym foetus as a nomen protectum for both cattle and porcine trichomonads. The case has been submitted to the International Commision on Zoological Nomenclature for ruling under its plenary power.
The microsporidial genus, Brachiola, contains three species: the type species Brachiola vesicularum (identified from an AIDS patient) and two species transferred from the genus Nosema, becoming Brachiola connori and Brachiola algerae. A developmental feature of the genus Brachiola is the “thickened” plasmalemma from sporoplasm through sporoblast stage. The sporoplasm has been reported to have a thick plasmalemma at 1-h postextrusion. The purpose of this investigation was to observe B. algerae spores before, during and after germination to determine if the plasmalemma is thick at the point of extrusion and if not, when and how it forms. New understandings regarding the polar filament position inside the spore, places it outside the sporoplasm proper with the sporoplasm limiting membrane invaginations surrounding it. These invaginations, present a possible location for aquaporins. The multilayered interlaced network (MIN), a new organelle (possibly of Golgi origin from the sporoblast), was observed inside the spore and sporoplasm; it formed an attachment to the end of the extruded polar tube and contributed to the thickening of the sporoplasm plasmalemma. A thin “unit limiting membrane”, present on the sporoplasm at the time of extrusion, is connected to the MIN by many cross-connections forming the “thick blistered” surface by 30 min-postextrusion.
Cysts of Myxobolus pendula from the gill arch of creek chub (Semotilus atromaculatus) were examined at various stages of development using light and electron microscopy. The subepithelial host connective tissue underwent dramatic changes, including degradation and remodelling of collagen and vascularisation, in response to the infection. Inflammatory cells lay in a fluid-filled space beneath the host's connective tissue and surrounded a distinctive parasite-derived matrix, composed of collagen fibril bundles embedded in cellular processes of the underlying secretory cells. This collagen matrix was resistant to degradation and invasion by leukocytes. Secretion of a matrix by M. pendula as a structural support, and a protective barrier against the host inflammatory cells is a novel observation for cyst-forming Myxosporea.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere