Toshio Okazaki, Noriyuki Okudaira, Kikuo Iwabuchi, Hajime Fugo, Tatsuo Nagai
Zoological Science 23 (3), 299-304, (1 March 2006) https://doi.org/10.2108/zsj.23.299
KEYWORDS: Bombyx mori, hemocyte, Apoptosis, adhesion, sialyl Lewis x
To clarify the regulatory mechanism of the rapid changes in the hemocyte density in the silkworm, Bombyx mori, during ecdysis, we evaluated the relationship between the hemocyte density and the incidence of apoptosis during this stage. We also evaluated the role of the sugar chains on the adhesion of hemocytes by analyzing the effects on the hemocyte density of the injection of enzymes that cut sugar chains and monosaccharides into the body cavity.
The hemocyte density was increased in the molting stage and spinning, and then decreased after the ecdysis. During spinning, the diameter of the granulocytes markedly increased, in which fatty granules in the cytoplasm increased, becoming foamy. They were identified to be apoptotic hemocytes using the Hoechst staining and the Comet assay. The decrease in the hemocyte density during spinning was mainly caused by the apoptosis of granulocytes. Next, we focused on the fluctuation of hemocyte density during the molting stage. Examination of the changes in the hemocyte density induced by injecting glycoside hydrolases, neuraminidase, sialic acid, or monosaccharides into the body cavity during the fourth molt stage and the third day in fifth instar larva demonstrated that the alteration of hemocyte density was regulated by the attachment and detachment of hemocytes via a selectin ligand, sugar chains. As with the injection of glycoside hydrolase, neuraminidase, sialic acid and fucose raised the hemocyte detachment, and it was assumed that the selectin ligands include the sialyl Lewis x like sugar chains, the same as mammalian lymphocytes.