BioOne.org will be down briefly for maintenance on 12 February 2025 between 18:00-21:00 Pacific Time US. We apologize for any inconvenience.
Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Larvae of diving beetles such as the various Dytiscus species (Coleoptera: Dytiscidae) are carnivorous and usually prey on other aquatic animals. Cannibalism among larvae of Dytiscus sharpi sharpi (Wehncke) was observed to begin when they were starved for more than two days under artificial breeding conditions. However, the 2-day starved larvae did not show cannibalism in the presence of intact, motionless, frozen tadpoles, or frozen shrimps. The beetle larvae attacked and captured intact tadpoles faster (15 sec) than other motionless and frozen tadpoles (120 sec), indicating that prey movement was an important factor in stimulating feeding behavior in larvae. Prey density does not have an effect on larval cannibalism. In cases in which preys are present at lower densities than that of larvae, a group of beetle larvae frequently fed on single prey. This feeding behavior, therefore, provides direct evidence of self-other recognition at the species level. Using two traps in one aquarium that allows the larvae to detect only prey smell, one containing tadpoles and another empty, the beetle larvae were attracted to the trap with tadpoles at high frequency, but not to the empty trap. In another experiment, the beetle larvae were not attracted to the trap containing a beetle larva. These results suggest that the larvae of D. sharpi sharpi are capable of recognizing prey scent, which enables the promotion of foraging behavior and the prevention of cannibalism.
Rana zhenhaiensis, a species of brown frog, is widely distributed in central and south China. In the present study, a total of 14 cDNA sequences encoding eight novel antimicrobial peptides (AMPs) were cloned from the synthesized cDNAs of R. zhenhaiensis skin. The eight novel AMPs belong to four families: brevinin-1 (four peptides), brevinin-2 (one peptide), ranatuerin-2 (one peptide) and chensinin-1 (two peptides), five AMPs from the four families (brevinin-1ZHa, brevinin-1ZHb, brevinin-2ZHa, ranatuerin-2ZHa and chensinin-1ZHa) were chemically synthesized, their antimicrobial and hemolytic activities were examined. The results indicated that the five AMPs possess different antimicrobial and hemolytic activities. Of these, brevinin-2ZHa exhibited the strongest and most broad-spectrum antimicrobial activity. Furthermore, scanning electron microscopy (SEM) experiment was carried out to investigate the potential antimicrobial mechanism of chensinin-1ZHa. The result indicated that chensinin-1ZHa may exert its function through disruption of the bacterial membrane.
Waminoa litus is a zooxanthella-bearing acoel worm that infests corals. It is unique to Bilateria in that it transmits its algal symbionts vertically via eggs irrespective of the heterogeneity of the symbionts. It simultaneously harbors two dinoflagellate genera: Symbiodinium and Amphidinium. In this study, we examined the timing and vertical transmission pathway of algal symbionts in W. litus using light and electron microscopy. The oogenesis of the worm can be divided into three stages: stage I, in which the ovary is absent; stage II, the early vitellogenic zone containing immature oocytes formed in the ovary; and stage III, with both early and late vitellogenic zones in the body. In the early vitellogenic zone at stage II, oocytes are surrounded by accessory-follicle cells (AFCs). Both Symbiodinium and Amphidinium symbionts are not initially observed in the oocytes, but are observed in the AFCs. In the late vitellogenic zone at stage III, oocytes are enveloped by a complete sheath of AFCs; the algal symbionts are taken up by the late vitellogenic oocytes. These observations suggest that AFCs mediate the transfer of the algae from the parent to the oocytes. Ribotype analyses of the Symbiodinium symbionts revealed that they differ from those harbored by coral in the same experimental aquarium. These results indicate that W. litus has an active algal transport pathway and maintains a specific lineage of Symbiodinium via vertical transmission.
To better understand the developmental mechanisms of color pattern variation in butterfly wings, it is important to construct an accurate representation of pattern elements, known as the “nymphalid groundplan”. However, some aspects of the current groundplan remain elusive. Here, I examined wing-wide elemental patterns of various nymphalid butterflies and confirmed that wing-wide color patterns are composed of the border, central, and basal symmetry systems. The central and basal symmetry systems can express circular patterns resembling eyespots, indicating that these systems have developmental mechanisms similar to those of the border symmetry system. The wing root band commonly occurs as a distinct symmetry system independent from the basal symmetry system. In addition, the marginal and submarginal bands are likely generated as a single system, referred to as the “marginal band system”. Background spaces between two symmetry systems are sometimes light in coloration and can produce white bands, contributing significantly to color pattern diversity. When an element is enlarged with a pale central area, a visually similar (yet developmentally distinct) white band is produced. Based on the symmetric relationships of elements, I propose that both the central and border symmetry systems are comprised of “core elements” (the discal spot and the border ocelli, respectively) and a pair of “paracore elements” (the distal and proximal bands and the parafocal elements, respectively). Both core and paracore elements can be doubled, or outlined. Developmentally, this system configuration is consistent with the induction model, but not with the concentration gradient model for positional information.
KEYWORDS: Takashima city, agroecosystem, amphibian, consolidation and improvement projects, presence/absence data, visual encounter, male calls, area, water pool, winter flooding, fish ladder, refuge biotope
In Japan, rice paddies play an important role as a substitute habitat for wetland species, and support rich indigenous ecosystems. However, since the 1950s, agricultural modernization has altered the rice paddy environment, and many previously common species are now endangered. It is urgently necessary to evaluate rice paddies as habitats for conservation. Among the species living in rice paddies, frogs are representative and are good indicator species, so we focused on frog species and analyzed the influence of environmental factors on their habitat use. We found four frog species and one subspecies (Hyla japonica, Pelophylax nigromaculatus, Glandirana rugosa, Lithobates catesbeianus, and Pelophylax porosa brevipoda) at our study sites in Shiga prefecture. For all but L. catesbeianus, we analyzed the influence of environmental factors related to rice paddy structure, water management and availability, agrochemical use, connectivity, and land use on breeding and non-breeding habitat use. We constructed generalized additive mixed models with survey date as the smooth term and applied Akaike's information criterion to choose the bestranked model. Because life histories and biological characteristics vary among species, the factors affecting habitat use by frogs are also expected to differ by species. We found that both breeding and non-breeding habitat uses of each studied species were influenced by different combinations of environmental factors and that in most cases, habitat use showed seasonality. For frog conservation in rice paddies, we need to choose favorable rice paddy in relation to surrounding land use and apply suitable management for target species.
We assessed the host-use pattern of the sponge-endosymbiotic bivalve Vulsella vulsella and its demographic consequences in an inland sea in Okinawa Island, Japan. Vulsella vulsella utilized only one massive globular sponge species Spongia sp. as a host, and no Spongia sp. without V. vulsella were found. Individual sponges contained 9–248 live bivalves and 0–222 dead bivalves. The densities of live and dead bivalves in individual sponges were approximately constant irrespective of sponge size, indicating that available space is very scarce inside each sponge. The size distribution of bivalves was skewed to small, young individuals less than 30 mm in shell height, although the estimated largest possible size was 106 mm. The bivalve population at each sampling date was composed of three yearly cohorts, and recruitment of juveniles occurred in the summer. The bivalves became sexually mature as males within one year after recruitment and changed sex from male to female as they grew. The size and sex distributions of the bivalve were largely similar among sponges regardless of sponge size, suggesting that the recruitment, growth, longevity, and sex change of the bivalve were strictly regulated, probably by the high water temperature and strong waves generated by typhoons in summer months.
A detailed understanding of the habitat needs of brown eared pheasants (Crossoptilon mantchuricum) is essential for conserving the species. We carried out field surveys in the Huanglong Mountains of Shaanxi Province, China, from March to June in 2007 and 2008. We arrayed a total of 206 grid plots (200 × 200 m) along transects in 2007 and 2008 and quantified a suite of environmental variables for each one. In the optimal logistic regression model, the most important variables for brown eared pheasants were slope degree, tree cover, distance to nearest water, cover and depth of fallen leaves. Hosmer and Leweshow goodness-of-fit tests explained that logistic models for the species were good fits. The model suggested that spring habitat selection of the brown eared pheasant was negatively related to distance to nearest water and slope degree, and positively to cover of trees and cover and depth of fallen leaves. In addition, the observed detected and undetected grids in 2007 did not show significant differences with predictions based on the model. These results showed that the model could well predict the habitat selection of brown eared pheasants. Based on these predictive models, we suggest that habitat management plans incorporating this new information can now focus more effectively on restrictions on the number of tourists entering the nature reserve, prohibition of firewood collection, livestock grazing, and medicinal plant harvesting by local residents in the core areas, protection of mixed forest and sources of the permanent water in the reserve, and use of alternatives to firewood.
KEYWORDS: Takashima city, land consolidation and improvement projects, deep concrete-lined channels, water regime, rice paddy management, naka-boshi, agroecosystem, amphibian
In Japan, rice paddies have acted as a substitute habitat for pond-breeding frogs. However, since the 1950s, agricultural modernization has altered the rice paddy environment, and pond-breeding frog populations have been decreasing. This agricultural modernization has led to rice paddy fragmentation via roadways and the construction of deep channels. To assess the influences of habitat fragmentation, we compared the distribution of two pond-breeding frogs, a common species, Hyla japonica, and an endangered species, Pelophylax porosa brevipoda, around a deep roadside ditch. In Shiga prefecture, we selected two rice paddies along a roadway and recorded the number of frogs and their snout-vent length (SVL) at the levee of a rice paddy, ditch, bank, and adjacent roadway. In total, we identified 1,293 P. p. brevipoda and 181 H. japonica. Most P. p. brevipoda were either at the levee or ditch, and the number of this species found in the ditch was much higher than in any other location in July and October. The SVLs of P. p. brevipoda found in the ditch in June were smaller than those in October. Most H. japonica were at the levee or bank, and there were no apparent temporal or spatial patterns of distribution. Our results suggest that the ditch acts as a barrier to juveniles in early summer and to all frogs during autumn for P. p. brevipoda but not for H. japonica. For long-term conservation, it is important to study the movement patterns related to life history and rice paddy management.
The B chromosomes are accessory elements that are widely distributed among eukaryotic genomes and often show non-Mendelian inheritance. They are considered dispensable for the growth, development, and reproduction of organisms. Some studies have suggested that these elements may affect sex determination. Harttia is a small armored catfish genus that shows sexual dimorphism, including hypertrophied odontodes on the pectoral fin spines and along the margins of the snout in mature males. They exhibit considerable karyotypic diversity with diploid number (2n) variation and heteromorphic sex system in H. carvalhoi. To date, no occurrences of B chromosomes in the Harttia genus were detected and no relation to sexual differentiation in Neotropical fish has been determined. To determine the validity of this claim, the present paper characterized specimens of Harttia longipinna by classical and molecular cytogenetic methods. The 2n found was 58 (16m 12sm 16st 14a), but of the 50 specimens analyzed (30 male and 20 female), 23 specimens (16 males and seven females) show an intra-individual from 0 to 2 micro B chromosomes. The B chromosomes were completely heterochromatic. The single NORs were shown in the first acrocentric pair with silver staining and 18S rDNA probing. FISH performed with 5S rDNA probe showed a single cistron in the proximal region of the short arm of a small metacentric pair. Thus, the cytogenetic data obtained in this study of H. longipinna highlight the karyotypic diversity found within the genus Harttia, and represent the first description of B chromosomes for this genus.
The systematics of Oriental voles remains controversial despite numerous previous studies. In this study, we explore the systematics of all species of Oriental voles, except Eothenomys wardi, using a combination of DNA sequences and morphological data. Our molecular phylogeny, based on two mitochondrial genes (COI and cyt b), resolves the Oriental voles as a monophyletic group with strong support. Four distinct lineages are resolved: Eothenomys, Anteliomys, Caryomys, and the new subgenus Ermites. Based on morphology, we consider Caryomys and Eothenomys to be valid genera. Eothenomys, Anteliomys, and Ermites are subgenera of Eothenomys. The molecular phylogeny resolves subgenera Anteliomys and Ermites as sister taxa. Subgenus Eothenomys is sister to the clade AnteliomysErmites. Caryomys is the sister group to genus Eothenomys. Further, the subspecies E. custos hintoni and E. chinensis tarquinius do not cluster with E. custos custos and E. chinensis chinensis, respectively, and the former two taxa are elevated to species level and assigned to the new subgenus Ermites.
The gonadotropins (GtHs), follicle-stimulating hormone (FSH) and luteinizing hormone (LH), are heterodimers composed of a common α subunit (GPα) and a unique β subunit (FSHβ or LHβ); they are synthesized in and secreted from gonadotrophs (FSH and LH cells) in the pituitary. Little is known about the roles of FSH and LH during spermatogenesis in perciform fishes. In this study, we examined immunoreactive changes in FSH and LH cells, and changes in the gene expression of the three gonadotropin subunits in the pituitary of male chub mackerel Scomber japonicus during testicular development. FSHβ-immunoreactive (ir) and LHβ-ir cell area were measured immuno-histochemically based on the FSH and LH cell-occupying area in the proximal pars distalis. The FSHβ-ir cell area increased significantly during spermiation, while FSHβ mRNA levels, already high at the beginning of spermatogenesis, increased further, peaking during spermiation. In contrast, LHβ-ir cell area and LHβ mRNA levels, which were low at the beginning of spermatogenesis, increased significantly during late spermatogenesis, peaking during spermiation. For both FSH and LH, GtHβ-ir cell area and GtHβ mRNA levels decreased until gonadal resting. GPα mRNA levels showed similar changes to LHβ mRNA levels. These results suggest that in the chub mackerel, FSH may play an important role in the early and late phases of spermatogenesis, and that LH may play a role during late spermatogenesis and spermiation. Moreover, our results demonstrate that changes in GtHβ-ir cell area were accompanied by similar changes in the expression of the FSHβ and LHβ genes, both of which increased during testicular development.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere