Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Many migratory bird species fly during the night (nocturnal migrants) and have been shown to display some phototaxis to artificial light. During 2006 to 2009, we investigated phototaxis in nocturnal migrants at Jinshan Yakou in Xinping County (N23°56′, E101°30′; 2400 m above sea-level), and at the Niaowang Mountain in Funing County (N23°30′, E105°35′; 1400 m above sea-level), both in the Yunnan Province of Southwest China. A total of 5069 birds, representing 129 species, were captured by mist-netting and artificial light. The extent of phototaxis effect on bird migration was examined during all four seasons, three phases of the moon, and under two weather conditions (mist and wind). Data were statistically analyzed to determine the extent to which these factors may impact phototaxis of nocturnal migrants. The results point to phototaxis in birds migrating in the spring and autumn, especially in the autumn. Furthermore, migrating birds were more readily attracted to artificial lights during nights with little moonlight, mist, and a headwind. Regardless of the initial orientation in which birds flew, either following the wind or against the wind, birds would always fly against the wind when flying towards the light. This study broadens our understanding of the nocturnal bird migration, potentially resulting in improved bird ringing practices, increased awareness, and better policies regarding bird protection.
Many insects utilize substrate-borne vibrations as a source of information for recognizing mates or predators. Among various substrates, plant leaves are commonly used for transmitting and receiving vibrational information. However, little is known about the utilization of vibrations by leaf-dwelling insects, especially coleopteran beetles. We conducted two experiments to examine the response of the leaf-dwelling cerambycid beetle, Paraglenea fortunei, to substrate-borne vibrations. We recorded and analyzed vibrations of host plant leaves from four different sources: wind (0.5 m/s), a beetle during landing, a walking beetle, and a beetle walking in the wind (0.5 m/s). We then measured the behavioral thresholds, the lowest amplitudes that induce behavioral responses, from beetles walking and resting on horizontal and vertical substrates with pulsed vibrations ranging from 20 Hz to 1 kHz. The vibrational characteristics of biotic and abiotic stimuli clearly differed. Beetle-generated vibrations (landing, walking, and walking in the wind) were broadly high in the low-frequency components above ∼30 Hz, while wind-generated vibrations showed a dominant peak at ∼30 Hz and a steep decrease thereafter. Among four situations, beetles walking on horizontal substrates showed lowest thresholds to vibrations of 75–500 Hz, which are characteristic of beetle-generated vibrations. Given that P. fortunei beetles are found on horizontal leaf surfaces of the host plant, vibrations transmitted though horizontal substrates may induce a strong freeze response in walking beetles to detect conspecifics or heterospecifics. Our findings provide evidence that leaf-dwelling beetles can discriminate among biotic and abiotic factors via differences in vibrational characteristics.
It has long been hypothesized that the flower-like appearance of the juvenile orchid mantis is used as visual camouflage to capture flower-visiting insects, although it is doubtful whether such morphological resemblance alone could increase their success in hunting. We confirmed that juvenile female orchid mantes often succeed in capturing oriental honeybees, while adult females often fail. Since most of the honeybees approached the juveniles from the front, we hypothesized that juvenile orchid mantes might attract honeybees by emitting some volatile chemical cues. Gas chromatography-mass spectrometry analyses revealed that the mantes' mandibular adducts contained 3-hydroxyoctanoic acid (3HOA) and 10-hydroxy-(E)-2-decenoic acid (10HDA), both of which are also features of the pheromone communication of the oriental honeybee. We also successfully detected 3HOA emitted in the head space air only at the time when the juvenile mantes were attempting to capture their prey. Field bioassay showed that the Oriental Honeybee predominantly preferred to visit dummies impregnated with a mixture of the appropriate amounts and ratios of 3HOA and 10HDA. We therefore conclude that the juvenile mantes utilize these as allelochemicals to trick and attract oriental honeybees.
Two full-length cDNA (Pt-CHH1 and Pt-CHH2) sequences encoding crustacean hyperglycemic hormone (CHH) were cloned from tissues of the swimming crab (Portunus trituberculatus) using RACE. Pt-CHH1 was cloned from eyestalk, whereas Pt-CHH2 was cloned from thoracic ganglia. Sequence and structure analyses of Pt-CHH1 and Pt-CHH2 suggest that they may be generated from alternative splicing. Tissue distribution showed that transcript of Pt-CHH1 was only detected in eyestalk, while transcript of Pt-CHH2 was observed in several extra-eyestalk tissues. The transcript levels of Pt-CHH1 and Pt-CHH2 during molting and ovarian development were determined using qPCR. In molting process, level of Pt-CHH1 in eyestalk increased from stage A (postmolt), and to significant higher at stage C (intermolt), then decreased during premolt (D0–D4). In ovarian development, level of Pt-CHH1 in eyestalk decreased from previtellogenic stage (II), and to significant lower at mature stage (IV). The expression patterns of Pt-CHH2 in thoracic ganglia and Y-organ were distinct from that of Pt-CHH1 in eyestalk. The combined results suggest that Pt-CHH1 may be involved in inhibition of molting and ovarian development, whereas Pt-CHH2 may have other physiological functions.
The marine gastropod Onchidium has a multiple photoreceptive system consisting of stalk eyes, dorsal eyes, photosensitive neurons, and extraocular dermal photoreceptor cells (DPCs). The DPCs were widespread all over the dorsal mantle and distributed singly or in groups in the dermis, but were not discernible by the naked eye. The DPC was oval in shape and large in size, and characterized by features specific to gastropod photoreceptor cells such as massive microvilli, photic vesicles, and a depolarized response. DPC-17, one of a group of 19 DPCs, was examined on serial semi-thin sections of 0.4 µm in thickness with a high-voltage transmission electron microscope (HVTEM). The axon emerged specifically from the lateral side between the distal microvillous portion and proximal cytoplasm, travelled through the connective tissue, and joined a small nerve bundle (NB). Two types of supportive cells were found along the length of the axon. The first type was a covering cell (CC) surrounding the surface of the DPC body and continuing onward to the axon sheath. DPC-17 was covered by 11 CCs, while the larger DPC-6 was only covered by four CCs. The second type was a sheath cell (ShC) wrapping the surface of the small NB where the axon of the DPC merged with undefined nerve fibers. The axon extending directly from DPC-17 was reconstructed three-dimensionally (3D) using DeltaViewer software. The 3D-reconstructed image of the sheath of the axon and the CC demonstrated the continuity between the two structures, especially when the image was rotated using DeltaViewer.
Toru Katoh, Shinsaku Koji, Takahide A. Ishida, Kei W. Matsubayashi, Sih Kahono, Norio Kobayashi, Kota Furukawa, Bui Tuan Viet, João Vasconcellos-Neto, Charles N. Lange, Georg Goergen, Susumu Nakano, Nan-Nan Li, Guo-Yue Yu, Haruo Katakura
Ladybird beetles in the tribe Epilachnini include notorious crop pests and model species studied intensively in various fields of evolutionary biology. From a combined dataset of mitochondrial (ND2) and nuclear (28S) DNA sequences, we reconstructed the phylogeny of 46 species of Epilachnini from Asia, Africa, America, and the Australian region: 16 species in Epilachna, 24 species in Henosepilachna, and one species each in Adira, Afidenta, Afidentula, Afissula, Chnootriba, and Epiverta. In our phylogenetic trees, both Epilachna and Henosepilachna were reciprocally polyphyletic. Asian Epilachna species were monophyletic, except for the inclusion of Afissula sp. Asian and Australian Henosepilachna species likewise formed a monophyletic group, excluding H. boisduvali. African Epilachna and Henosepilachna species did not group with their respective Asian and American congeners, but were paraphyletic to other clades (Epilachna species) or formed a separate monophyletic group (Henosepilachna species) together with Chnootriba similis. The American Epilachna species were monophyletic and formed a clade with American Adira clarkii and Asian Afidentula manderstjernae bielawskii; this clade was the sister group to Asian and Australian Henosepilachna, but was distant from Asian Epilachna. Chnootriba was embedded in the African Henosepilachna clade, and Afissula in the Asian Epilachna clade. Epiverta, which is morphologically unique, was the sister group to Asian Epilachna, although with weak support. From reconstructions of biogeographical distribution and host-plant utilization at ancestral nodes, we inferred an African origin for the common ancestor of the species studied, and found the frequency of host shifts to differ greatly between the two major lineages of Epilachnini examined.
We set out to develop an oviposition induction technique for captive female hawksbill turtles Eretmochelys imbricata. The infertile eggs of nine females were induced to develop by the administration of follicle-stimulating hormone, after which we investigated the effects of administering oxytocin on oviposition. Seven of the turtles were held in a stationary horizontal position on a retention stand, and then oxytocin was administrated (0.6–0.8 units/kg of body weight; 5 mL). The seven turtles were retained for a mandatory 2 h period after oxytocin administration, and were then returned to the holding tanks. As the control, normal saline (5 mL) was administered to the other two turtles, followed by the administration of oxytocin after 24 h. The eggs in oviducts of all nine turtles were observed by ultrasonography at 24 h after oxytocin administration. The control experiment validated that stationary retention and normal saline administration had no effect on egg oviposition. Eight of the turtles began ovipositing eggs at 17–43 min after oxytocin administration, while one began ovipositing in the holding tank immediately after retention. All turtles finished ovipositing eggs within 24 h of oxytocin administration. This report is the first to demonstrate successful induced oviposition in sea turtles. We suggest that the muscles in the oviducts of hawksbill turtles may respond to relatively lower doses of oxytocin (inducing contractions) compared to land and freshwater turtles (4–40 units/kg) based on existing studies.
We verify the efficiency of a protocol for estrus synchronization in captive female collared peccaries (Pecaricari tajacu) using the prostaglandin analog D-cloprostenol. Five adult female collared peccaries received an intramuscular administration of 60 µg D-cloprostenol, which procedure was repeated after a 9-day interval. For 10 days after second the D-cloprostenol administration, females were monitored for changes in external genitalia, ovarian ultrasonography, vaginal cytology and reproductive hormonal dosage. As a result, four females synchronized their estrous at 9.5 ± 0.5 days after the second administration of the prostaglandin analog. Such females showed external signs of estrus, including vulvar opening, hyperemic vaginal mucosa, and vaginal mucus, concomitant with an increase in the proportion of superficial cells (52.2 ± 9.9%) verified through vaginal cytology. An estrogen peak of 22.7 ± 3.4 pg/ml was detected by hormonal dosage, and the presence of anechoic follicles measuring 0.29 ± 0.05 × 0.32 ± 0.07 mm were detected in the ovary by ultrasonography. Given these findings, we suggest that D-cloprostenol may be effective for use in estrus synchronization in collared peccaries.
Previously, we reported that the medaka testis abundantly expresses the mRNA for trypsinogen, which is a well-known pancreatic proenzyme that is secreted into and activated in the intestine. Currently, we report our characterization of the medaka trypsin using a recombinant enzyme and show that this protein is a serine protease that shares properties with trypsins from other species. Two polypeptides (28- and 26-kDa) were detected in the testis extracts by Western blot analysis using antibodies that are specific for medaka trypsinogen. The 28-kDa polypeptide was shown to be trypsinogen (inactive precursor), and the 26-kDa polypeptide was shown to be trypsin (active protease). We did not detect enteropeptidase, which is the specific activator of trypsinogen, in the testis extract. Immunohistochemical analyses using the same trypsinogen-specific antibody produced a strong signal in the spermatogonia and spermatozoa of the mature medaka testis. Substantial staining was found with spermatocytes, whereas extremely weak signals were observed with spermatids. In vitro incubation of testis fragments with the trypsinogen antibody strongly inhibited the release of sperm from the testis into the medium. Trypsin activity was detected in sperm extracts using gelatin zymographic analysis. Immunocytochemistry showed that trypsinogen and trypsin were localized to the cell membranes surrounding the sperm head. Collectively, these results suggest that trypsin plays an important role in the testis function of the medaka.
After a long-standing taxonomic confusion, the echiurid genus IkedosomaBock, 1942, endemic to Japan and surroundings, is redefined on the basis of morphological and molecular analyses of many new Japanese materials and some museum specimens. The re-examination of a syntype of I. elegans (Ikeda, 1904), the type species of the genus, first revealed that its oblique muscle layer is continuous throughout and never fasciculate between longitudinal muscle bands, unlike those described in the definitions that have prevailed for ca. 70 years, making this genus indistinguishable from ListriolobusSpengel, 1912. Two Japanese species of Ikedosoma, I. elegans and I. gogoshimense (Ikeda, 1904), which were thus redefined, had also been poorly defined in the past to the point of being nearly indistinguishable from each other, largely due to incomplete descriptions and poor collections. Molecular phylogenetic analyses using 18S and 28S ribosomal RNA, histone H3, and cytochrome c oxidase subunit I (COI) genes clearly confirmed the distinction between these two species, their monophyletic origin, and their distinction from L. sorbillans (Lampert, 1883). The genus Ikedosoma thus validated is morphologically distinguishable from Listriolobus by the absence of a rectal caecum. Ikedosoma elegans and I. gogoshimense also differ in the disposition of gonoduct pairs. The third known species, I. qingdaoenseLi, Wang and Zhou, 1994, from Qingdao, North China, lacks information on oblique muscle layers, which makes even its generic affiliation uncertain.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere