Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Motivated by the discovery of segmental epithelial coeloms, or “head cavities,” in elasmobranch embryos toward the end of the 19th century, the debate over the presence of mesodermal segments in the vertebrate head became a central problem in comparative embryology. The classical segmental view assumed only one type of metamerism in the vertebrate head, in which each metamere was thought to contain one head somite and one pharyngeal arch, innervated by a set of cranial nerves serially homologous to dorsal and ventral roots of spinal nerves. The non-segmental view, on the other hand, rejected the somite-like properties of head cavities. A series of small mesodermal cysts in early Torpedo embryos, which were thought to represent true somite homologs, provided a third possible view on the nature of the vertebrate head. Recent molecular developmental data have shed new light on the vertebrate head problem, explaining that head mesoderm evolved, not by the modification of rostral somites of an amphioxus-like ancestor, but through the polarization of unspecified paraxial mesoderm into head mesoderm anteriorly and trunk somites posteriorly.
Our knowledge of vertebrate cranium evolution has relied largely on the study of gnathostomes. Recent evolutionary and developmental studies of cyclostomes have shed new light on the history of the vertebrate skull. The recent ability to obtain embryos of the hagfish, Eptatretus burgeri, has enabled new studies which have suggested an embryonic morphological pattern (the “cyclostome pattern”) of craniofacial development. This pattern is shared by cyclostomes, but not by modern jawed vertebrates. Because this pattern of embryonic head development is thought to be present in some stem gnathostomes (ostracoderms), it is possible that the cyclostome pattern represents the vertebrate ancestral pattern. The study of cyclostomes may thus lead to an understanding of the most ancestral basis of craniofacial development. In this review, we summarize the development of the hagfish chondrocranium in light of the cyclostome pattern, present an updated comparison of the cyclostome chondrocranium, and discuss several aspects of the evolution and development of the vertebrate skull.
The inertial power and inertial force of wings are important factors in evaluating the flight performance of native bats. Based on measurement data of wing size and motions of Eptesicusfuscus, we present a new computational bat wing model with divided fragments of skeletons and membrane. The motions of the model were verified by comparing the joint and tip trajectories with native bats. The influences of flap, sweep, elbow, wrist and digits motions, the effects of different bones and membrane of bat wing, the components on vertical, spanwise and fore-aft directions of the inertial power and force were analyzed. Our results indicate that the flap, sweep, and elbow motions contribute the main inertial power and force; the membrane occupies an important proportion of the inertial power and force; inertial power on flap direction was larger, while variations of inertial forces on different directions were not evident. These methods and results offer insights into flight dynamics in other flying animals and may contribute to the design of future robotic bats.
Adult medaka fish (Oryzias latipes) exhibit complex social behaviors that depend mainly on visual cues from conspecifics. The ontogeny of visually-mediated social behaviors from larval/juvenile to adult medaka fish, however, is unknown. In the present study, we established a simple behavioral paradigm to evaluate the swimming proximity to conspecifics based on visual cues in an inter-individual interaction of two medaka fish throughout life. When two fish were placed separately in a cylindrical tank with a concentric transparent wall, the two fish maintained close proximity to each other. A normal fish inside the tank maintained proximity to an optic nerve-cut fish outside of the tank, while the converse was not true. This behavioral paradigm enabled us to quantify visually-induced motivation of a single fish inside the tank. The proximity was detected from larval/juvenile to adult fish. Larval fish, however, maintained close proximity not only to conspecifics, but also to heterospecifics. As the growth stage increased, the degree of proximity to heterospecifics decreased, suggesting that shoaling preferences toward conspecifics and/or visual ability to recognize conspecifics is refined and established according to the growth stage. Furthermore, the proximity of adult female fish was affected by their reproductive status and social familiarity. Only before spawning, adult females maintained closer proximity to familiar males rather than to unfamiliar males, suggesting that proximity was affected by familiarity in a female-specific manner. This simple behavioral paradigm will contribute to our understanding of the neural basis of the development of visually-mediated social behavior using medaka fish.
We examined effect of environmental enrichment on cuttlefish, the most neutrally advanced invertebrate, to compare species variation of genetic and environmental influences. Cuttlefish were reared from seven to 117 days in one of three environments, namely, “poor” (artificial bottom without objects), “standard” (sandy bottom), and “enriched” (sandy bottom with objects). In Experiment 1, we explored whether enrichment affects the exhibition of crypsis in the cuttlefish. The cuttlefish in the standard and enriched environments spent most of their time at the bottom, exhibiting the mottled or disruptive pattern starting at 27 days of age. On the contrary, those in the poor environment exhibited uniform pattern starting at 87 days of age. Additionally, they repeatedly attempted to dig from 27 to 87 days of age, and moved around by hovering from 77 to 117 days of age. In Experiment 2, we exposed the cuttlefish to six novel substrates every other month after 53 days of age to verify whether enrichment actually affected the maturation of cryptic ability. Cuttlefish from the poor environment tended not to dig into white sandy bottom at 53–55 days of age. Additionally, they did not clearly exhibit appropriate body patterns in response to the six substrates compared to those from the other two environments at 81–83 days of age. However, at 113–115 days of age, most cuttlefish from the three environments exhibited similar cryptic behaviors in response to novel substrates. We conclude that physical enrichment promotes crypsis and accelerates the maturation of this ability in cuttlefish.
Polychaete fan worms and ascidians accumulate high levels of vanadium ions. Several vanadiumbinding proteins, known as vanabins, have been found in ascidians. However, no vanadium-binding factors have been isolated from the fan worm. In the present study, we sought to identify vanadiumbinding proteins in the branchial crown of the fan worm using immobilized metal ion affinity chromatography. A nucleoside diphosphate kinase (NDK) homolog was isolated and determined to be a vanadium-binding protein. Kinase activity of the NDK homologue, PoNDK, was suppressed by the addition of V(IV), but was unaffected by V(V). The effect of V(IV) on PoNDK precedes its activation by Mg(II). This is the first report to describe the relationship between NDK and V(IV). PoNDK is located in the epidermis of the branchial crown, and its distribution is very similar to that of vanadium. These results suggest that PoNDK is associated with vanadium accumulation and metabolism in P. occelata.
Hatching gland cells (HGCs) originate from different germ layers between frogs and teleosts, although the hatching enzyme genes are orthologous. Teleostei HGCs differentiate in the mesoendodermal cells at the anterior end of the involved hypoblast layer (known as the polster) in late gastrula embryos. Conversely, frog HGCs differentiate in the epidermal cells at the neural plate border in early neurula embryos. To infer the transition in the developmental origin of HGCs, we studied two basal ray-finned fishes, bichir (Polypterus) and sturgeon. We observed expression patterns of their hatching enzyme (HE) and that of three transcription factors that are critical for HGC differentiation: KLF17 is common to both teleosts and frogs; whereas FoxA3 and Pax3 are specific to teleosts and frogs, respectively. We then inferred the transition in the developmental origin of HGCs. In sturgeon, the KLF17, FoxA3, and HE genes were expressed during the tailbud stage in the cell mass at the anterior region of the body axis, a region corresponding to the polster in teleost embryos. In contrast, the bichir was suggested to possess both teleost- and amphibian-type HGCs, i.e. the KLF17 and FoxA3 genes were expressed in the anterior cell mass corresponding to the polster, and the KLF17, Pax3 and HE genes were expressed in dorsal epidermal layer of the head. The change in developmental origin is thought to have occurred during the evolution of basal ray-finned fish, because bichir has two HGCs, while sturgeon only has the teleost-type.
Integration of signaling pathways is important for the establishment of the body plan during embryogenesis. However, little is known about how the multiple signals interact to regulate morphogenesis. Here, we show that junb is expressed in the posterior neural plate and the caudal fin during Xenopus embryogenesis and that overexpression of wild-type JunB induces small head phenotypes and ectopic tail-like structures. A mutant form of JunB that lacked GSK3 and MAPK phosphorylation sites showed stronger tail-like structure-inducing activity than wild-type JunB. Moreover, the mutant JunB induced expression of tailbud and neural marker genes, but not somite and chordoneural hinge (CNH) marker genes in ectopic tail-like structures. In ectodermal explants of Xenopus embryos, overexpression of JunB increased the expression of tailbud and posterior marker genes including fgf3, xbra (t) and wnt8. These results indicate that JunB is capable of inducing the ectopic formation of tissues similar to the tailbud, and that the tailbud-inducing activity of JunB is likely to be regulated by FGF and Wnt pathways. Overall, our results suggest that JunB is a regulator of tail organization possibly through integration of several morphogen signaling pathways.
Albino animals are useful for in situ hybridization experiments that demonstrate gene expression in embryos and organs, for the immunological rejection of skin grafts transplanted to host animals, and to identify tissues with regenerative ability during limbs and retina regeneration processes. Cynops pyrrhogaster has extensive regenerating capacities. To facilitate regenerative research, in the present study, we produced albino C. pyrrhogaster using genomic editing. The DNA fragment containing part of the tyrosinase gene from C. pyrrhogaster was amplified using degenerate primers corresponding to evolutionarily conserved nucleotide sequences among several species, and the nucleotide sequence was determined. We designed a transcription activator-like effector nuclease (TALEN) that targets a candidate of the C. pyrrhogaster tyrosinase gene. Fertilized eggs were injected with TALEN mRNA, and albinos of C. pyrrhogaster were obtained. The results of the present study demonstrated that TALEN can be used effectively for genomic editing in C. pyrrhogaster and that the candidates of the tyrosinase gene that were cloned by us are essential for melanin synthesis. The albino newts created in the present study can be used as versatile experimental material.
The basic structure of a bird feather may be adapted to suit a variety of functions on different parts of the body and in different species. In Oriental honey buzzards (Pernis ptilorhynchus), a species which often preys on the larvae of bees and wasps, it is thought that the bird's integument may provide protection against the stings of these insects. We investigated the structure of Oriental honey buzzard feathers from the face, head, and neck using light and scanning electron microscopy. The structure and appearance of the feathers were compared with those of two other hawk species which live in similar habitats but have different diets: the grey-faced buzzard (Butastur indicus) and the black kite (Milvus migrans). All feathers of Oriental honey buzzards that were examined were smaller than feathers from the same regions of the body of other species and had a reduced number of plumulaceous barbs; barbs were also closer together at the feather tip and had a high barbule density. The small ‘scale feathers’ on the face had deep barbules with a curved, armor-like appearance, which may help prevent stings from reaching the skin. A unique filamentous substance was observed on all the honey buzzard feathers, particularly those from around the eye of a male bird. It is possible that this may be related to a chemical defense mechanism to deter bees and wasps.
South American melanopline grasshoppers display a disproportionate number of derived karyotypes, including many cases of neo-sex chromosome systems. This is especially true of the genus Dichroplus and its Maculipennis species group. We analyzed the karyotype and neo-sex chromosomes in mitosis and meiosis of Dichroplus maculipennis and D. vittigerum from Argentina using conventional and fluorescent cytogenetic protocols in order to elucidate the behavior and origin of these neo-XY systems in relation to the current phylogeny of this group. Our results showed that D. maculipennis (2n = 22♂/22♀; neoXY/neoXX) and D. vittigerum, whose karyotype is described here for the first time (2n = 18♂/18♀; neoXY/neoXX), show highly evolved neo-XY systems, although with significant differences between them. Furthermore, both species differ for two autosomal fixed Robertsonian fusions present in D. vittigerum. Analysis of karyotypic character state optimization strongly suggests the independent origin and evolution of neo-sex systems within this species group.
Planarian feeding behavior involves three steps: moving toward food, extending the pharynx from their planarian's ventral side after arriving at the food, and ingesting the food through the pharynx. Although pharynx extension is a remarkable behavior, it remains unknown what neuronal cell types are involved in its regulation. To identify neurons involved in regulating pharynx extension, we quantitatively analyzed pharynx extension and sought to identify these neurons by RNA interference (RNAi) and in situ hybridization. This assay, when performed using planarians with amputation of various body parts, clearly showed that the head portion is indispensable for inducing pharynx extension. We thus tested the effects of knockdown of brain neurons such as serotonergic, GABAergic, and dopaminergic neurons by RNAi, but did not observe any effects on pharynx extension behavior. However, animals with RNAi of the Prohormone Convertase 2 (PC2, a neuropeptide processing enzyme) gene did not perform the pharynx extension behavior, suggesting the possible involvement of neuropeptide(s in the regulation of pharynx extension. We screened 24 neuropeptide-coding genes, analyzed their functions by RNAi using the pharynx extension assay system, and identified at least five neuropeptide genes involved in pharynx extension. These was expressed in different cells or neurons, and some of them were expressed in the brain, suggesting complex regulation of planarian feeding behavior by the nervous system.
Colonies of the Japanese red coral Corallium japonicumKishinouye, 1903 collected off Cape Ashizuri, Japan were gonochoric and produced gonads in siphonozooids annually, mainly during the spring season. Polyp anatomy, gonadal morphology and gametogenesis in this species were revealed by light and electron microscopy. A siphonozooid had a pharynx with a prominent siphonoglyph and eight mesenteries: two sulcal, two asulcal, and four lateral. A rudimentary retractor was found on one side of each mesoglea of these mesenteries. The retractor arrangement in the siphonozooid was reverse of what was described in the autozooids of octocorals. Gonads initiated as small protrusions on the mesenteries, except in the asulcal ones, and even at an incipient stage they were covered with a sac-shaped thin layer of mesoglea, which was continuous with the mesoglea of mesenteries. Gastrodermis enveloped the complete outer surface of the thin layer of mesoglea throughout gametogenesis in both oocytes and sperm cysts. Oocytes produced many microvilli on their cortical surfaces beneath the thin layer of mesoglea concomitantly with the accumulation of lipid globules in the cells, whereas in sperm cysts spermatocytes and spermatids increased in number without microvilli production, followed by synchronous spermiogenesis involving remarkable changes in the shape and position of organelles. Based on the comparison of patterns in gonadal development between octocorals including C. japonicum, hexacorals and scyphozoans, octocoral and stauromedusa species may be characterized by the fact that gametogenesis never occurs in the matrix of mesoglea, but rather exclusively within the thin sac of mesoglea surrounded by gastrodermis.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere