Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Smooth scouringrush is a creeping perennial with a high silica content in stems that may impede herbicide uptake. Smooth scouringrush has become a troublesome weed in no-till cropping systems across eastern Washington. In previous field studies, glyphosate provided inconsistent control of smooth scouringrush. The objective of this study was to determine if the addition of an organosilicone surfactant to glyphosate would improve the efficacy and consistency of control through stomatal flooding. To test this hypothesis, glyphosate was applied at three field sites at 3.78 kg ae ha–1 alone, with an organosilicone surfactant (OS1 or OS2), an organosilicone plus nonionic surfactant blend, or an alcohol-based surfactant applied during the day or at night. Stem counts were recorded 1 yr after herbicide applications. Five of the six effective treatments observed across the three study sites included organosilicone surfactant or an organosilicone plus nonionic surfactant blend. At two sites, when there was a difference in efficacy between application times; daytime applications were more effective than nighttime applications. These results support the hypothesis of stomatal flooding as a likely mechanism for enhanced efficacy of glyphosate with the addition of an organosilicone surfactant. However, at one site, the treatments containing organosilicone surfactant were more efficacious when applied at night than during the day. At this site, high daytime temperatures and low relative humidity may have resulted in rapid evaporation of spray droplets. The addition of an organosilicone surfactant to glyphosate is recommended for smooth scouringrush control, and daytime treatments are preferred but should be applied when temperatures and humidity are not conducive to rapid droplet drying. Further research is necessary to confirm that stomatal flooding is responsible for improved glyphosate efficacy.
Nomenclature: Glyphosate; smooth scouringrush; Equisetum laevigatum A. Braun
In Iran, monochoria is a noxious weed in fields of transplanted rice. Two field experiments were conducted to assess the efficacy of soil-applied and foliar-applied herbicides to control monochoria in transplanted rice. Prepackaged herbicides (triafamone plus ethoxysulfuron applied at 40 g ai ha-1, pyrazosulfuron-ethyl plus pretilachlor applied at 382.5 g ai ha-1, and pendimethalin plus clomazone applied at 1,200 g ai ha-1) reduced monochoria biomass by 100%, 100%, and 14%, respectively; and a single application of flucetosulfuron at 30 g ai ha-1, pendimethalin at 990 g ai ha-1, thiobencarb at 2,750 g ai ha-1, and pretilachlor at 1,000 g ai ha–1 reduced monochoria biomass by 100%, 99%, 75%, and 56%, respectively, compared with a nontreated control. Tank-mixed bensulfuron-methyl at 45 g ai ha-1 applied with pretilachlor, thiobencarb, or pendimethalin provided 100% control of monochoria. Rice height, and straw and grain yield were greater after herbicide treatments than those of the nontreated and hand-weeded controls, indicating the advantages of chemical control of monochoria over manual weeding. Full-season monochoria interference reduced rice grain yield by 32%. In the second study, the herbicides triafamone plus ethoxysulfuron, flucetosulfuron, 2,4-D at 1,080 g ai ha-1, dicamba plus 2,4-D at 928 g ai ha-1, bispyribac-sodium at 31.25 g ai ha-1, bentazon plus MCPA at 1,150 g ai ha-1, pyribenzoxim at 30 g ai ha-1, and propanil at 5,400 g ai ha-1 applied to foliage at 4- to 5-leaf seedlings of monochoria provided ≥97% control and prevented 100% of its regrowth, with the exception of propanil. This study shows that monochoria control can be achieved by using a variety of residual and foliar-applied herbicides with different mechanisms of action.
Nomenclature: 2,4-D; bensulfuron-methyl; bentazon plus MCPA; bispyribac-sodium; clomazone; dicamba plus 2,4-D; flucetosulfuron; pyribenzoxim; pendimethalin; pretilachlor; pyrazosulfuron; propanil; thiobencarb; triafamone plus ethoxysulfuron; monochoria; Monochoria vaginalis (Burm. f.) C. Presl; rice; Oryza sativa L.
Herbicide resistance in Palmer amaranth and waterhemp is on the rise and poses a great concern to growers in the United States. A multistate screening was conducted for these two weed species in the United States to assess their sensitivity to glufosinate, dicamba, and 2,4-D. The screening was designed to understand the weed sensitivity landscape and emerging trends in resistance evolution by testing each herbicide at its respective label rate and at half the label rate. A total of 303 weed seed accessions from 21 states representing 162 Palmer amaranth and 141 waterhemp seeds were collected from grower fields in 2019 and screened in greenhouse conditions. Statistical power of different sample sizes and probability of survivors in each accession were estimated for each species and herbicide treatment. Overall, the efficacy of glufosinate, dicamba, and 2,4-D against all these accessions was excellent, with greater than 90% average injury. The variability in herbicide injury, if any, was greater with half the label rate of 2,4-D in some Palmer amaranth accessions, while waterhemp accessions had exhibited variable sensitivity with half the label rate of dicamba and glufosinate. The study highlights the value of monitoring weeds for herbicide sensitivity across broader landscape and the importance of glufosinate, dicamba, and 2,4-D herbicides in managing troublesome weeds as part of a diversified weed control program integrated with other chemical, mechanical and cultural practices.
Investigations of the relevance of low-tunnel methodology and air sampling concerning the off-target movement of dicamba were conducted from 2018 to 2022, focused primarily on volatility. This research, divided into three experiments, evaluated the impact of herbicides and adjuvants added to dicamba and the type of surface treated on dicamba volatility. Treatment combinations included glyphosate and glufosinate, the presence of a simulated contamination rate of ammonium sulfate (AMS), the benefit of a volatility reduction agent (VRA), and a vegetated (dicamba-resistant cotton) or soil surface treated with dicamba. Volatility assessments included air sampling collected over 48 h. Dicamba treatments were applied four times to each of two bare soil or cotton trays and placed inside the tunnels. Dicamba from air samples was extracted and quantified. Field assessments included the maximum and average visible injury in bioindicator soybean and the lateral movement of dicamba damage expressed by the farthest distance from the center of the plots to the position in which plants exhibited 5% injury. Adding glufosinate and glyphosate to dicamba increased the dicamba amount in air samples. A simulated tank contamination rate of AMS (0.005% v/v) did not affect dicamba emissions compared to a treatment lacking AMS. Adding a VRA reduced dicamba in air samples by 70% compared to treatment without the adjuvant. Dicamba treatments applied on vegetation generally produced greater detectable amounts of dicamba than treatments applied to bare soil. Field assessment results usually followed differences in dicamba concentration by treatments tested. Results showed that low-tunnel methodology allowed simultaneous comparisons of several treatment combinations concerning dicamba volatility.
The prolific seed production and polyploidy of annual bluegrass allow for the rapid development of herbicide resistance. Ethofumesate-resistant annual bluegrass plants were identified in the 1990s in grass seed production in Oregon, but their prevalence and distribution are not well documented. Therefore a dose–response experiment was initiated to determine the potential level of ethofumesate resistance in seed production systems. Seeds from 55 annual bluegrass populations were obtained from three sources: seed production fields (31 populations), the seed cleaning process (6 populations), and seed testing lots prior to retail distribution (18 populations). Additionally, two populations, one with known ethofumesate resistance and one with known susceptibility, were identified in preliminary testing and used as controls in this experiment. Seed from each collected population was increased. Individual seedlings were then transplanted into separate cone-tainers, grown to a size of 2 to 3 tillers in the greenhouse, and then sprayed using a compressed air track spray chamber with 10 doses of ethofumesate at 0, 0.56, 1.1, 2.8, 5.6, 8.4, 11.2, 16.8, 22.4, and 44.8 kg ai ha-1, with 0.84 to 2.2 kg ha-1 as the label application rate for perennial ryegrass. The resistant to susceptible ratio of populations across all sources ranged from 0.5 to 5.5. The most resistant populations found in production fields, seed cleaning, and seed testing lots had the effective dose necessary to kill 50% of the population (ED50) of 12.1, 9.4, and 13.1 kg ha-1, respectively. Furthermore, 68% of the populations found in production fields had ED50 higher than 6 kg ha-1, indicating common annual bluegrass resistance in grass seed production. As such, growers should implement integrated weed management strategies, as herbicides alone will likely be ineffective at controlling annual bluegrass.
The increased incidence of glyphosate-resistant weeds has led to an exponential increase in the use of glufosinate on glufosinate-resistant corn, cotton, and soybean crops. Field experiments were conducted in 2021 and 2022 to evaluate peanut response to glufosinate at 25 and 60 d after planting, corresponding to vegetative (V3) and reproductive (R4) growth stages, at 1.2, 4.7, 18.9, 75.5, and 302 g ai ha-1 representing 1/514 to 1/2 of the labeled rate of 604 g ha-1. Peanut injury and canopy and yield reductions from glufosinate were <10% when applied at 1.2, 4.7, and 18.9 g ha-1. However, at 75.5 and 302 g ha-1 peanut injury ranged from 24% to 72% at the V3 exposure timing and 33% to 54% at the R4 exposure timing. Similarly, glufosinate applied at 75.5 and 302 g ha-1 reduced peanut canopy width by 10% to 23% at the V3 exposure timing and by 43% to 57% at the R4 exposure timing. Averaged across exposure timing, peanut yield was reduced by 15% and 61% when glufosinate was applied at 75.5 and 302 g ha-1, respectively. Averaged across rates, peanut yield reduction was 18% at the V3 exposure timing, with glufosinate at 298 g ha-1 required to cause an estimated 50% reduction in yield. Peanut yield was reduced by 20% when glufosinate was applied at the R3 peanut growth stage, whereas glufosinate applied at 243 g ha-1 caused an estimated 50% reduction in yield. There was no difference in normalized difference vegetative index (NDVI) values between untreated plants and peanut exposed to glufosinate at 1.2, 4.7, and 18.9 g ha-1. However, peanut exposed to glufosinate at 75.5 and 302 g ha-1 was distinguished from untreated plants with lower NDVI values. Based on the Pearson correlation coefficient, the best timing for assessing potential yield reduction based on injury was between 2 and 4 wk after treatment.
Nomenclature: Glufosinate; peanut, Arachis hypogaea L.
Herbicide resistance in weeds significantly threatens crop production in the United States. The introduction of dicamba-resistant soybean and cotton stacked with other herbicide tolerance traits has provided farmers with the flexibility of having multiple herbicide options to diversify their weed management practices and delay resistance evolution. XtendiMax® herbicide with VaporGrip® Technology is a dicamba formulation registered for use on dicamba-resistant soybean and cotton crops by the U.S. Environmental Protection Agency (EPA). One of the terms of its registration includes an evaluation of inquiries on reduced weed control efficacy by growers or users of XtendiMax for suspected weed resistance. A total of 3,555 product performance inquiries (PPIs) were received from 2018 to 2021 regarding reduced weed control efficacy by dicamba. Following the criteria recommended by EPA for screening of suspected resistance in the field, a total of 103 weed accessions from 63 counties in 13 states were collected for greenhouse testing over those 4 yr. Weed accessions for greenhouse testing were collected only in states where resistance to dicamba was not yet confirmed in the weed species under investigation. The accessions, which consisted primarily of waterhemp and Palmer amaranth, were treated with dicamba at rates of 560 g ae ha-1 and 1,120 g ae ha-1. All weed accessions, except for one accession each of Palmer amaranth and waterhemp, were controlled by ≥90% with dicamba at 21 d after treatment in the greenhouse.
Nomenclature: Dicamba; Palmer amaranth, Amaranthus palmeri S. Watson; waterhemp, Amaranthus tuberculatus Moq. Sauer; cotton, Gossypium hirsutum L.; soybean, Glycine max L. Merr.
This article reviews the first textbooks focused on weed identification published in the United States. We go on to discuss those species considered the most troublesome weeds in agriculture. Common and scientific names written in the original texts have been cross referenced to current common and scientific names.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere